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Abstract 
 

Deliverable D4.4 Core module of the self-learning nexus engine is classified as a 

"Demonstrator." This document accompanies the deliverable and offers detailed explanations 

about the algorithmic fundaments and technical aspects of the Self-Learning Nexus 

Assessment Engine (SLNAE) and the NXG DSS. It is intended to complement the digital 

solutions developed from Task T4.4 Reinforcement Learning engine. 

 

The self-learning nexus engine is the core mechanism that supports multi-objective decision-

making in the SLNAE tool. The self-learning term refers to the underlying Artificial 

Intelligence (AI) and Machine Learning (ML) technology, enabling the creation of agents 

that autonomously learn (i.e. self-learning) optimal policy combinations (i.e. policy 

packages) to achieve the nexus-related objectives. We propose Multi Objective (Deep) 

Reinforcement Learning (MODRL) as the foundational family of ML algorithms to 

implement the NXG Decision Support System (DSS).  

 

The current version of the Self-Learning Nexus Assessment Engine is embedded into the 

public release of the SLNAE at the following urls: https://slnae-dev.nexogenesis.eu or 

https://nepat-dev.nexogenesis.eu.  

 

The SLNAE acronym, which is the reference to this tool in the Grant Agreement, has been 

changed to NEPAT (Nexus Policy Assessment Tool), during the project. This was decided 

because it was easier to pronounce than SLNAE and also it reflected better for the general 

audience the content of the tool. In this document, the two acronyms SLNAE and NEPAT 

are both being used indiscriminately and they refer to the same tool. This has been done on 

purpose, because SLNAE is mentioned in the Grant Agreement and also because several 

related actions have started and happened under with the tool named SLNAE, while now, 

more recent activities are referring to NEPAT and this document is an intermediate report for 

this tool. By the end of the project, NEPAT will be the name of this tool. 
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1. Introduction 
 

The WEFE nexus framework highlights the intricate linkages between water, energy, food and 

ecosystems dominated by complexity and modulated by climatic and socio-economic drivers. 

For instance, water is essential for agriculture (food production) and energy generation 

(hydropower and cooling in thermal power plants). Conversely, energy is needed for water 

extraction, treatment, and distribution, as well as for food production and processing. This 

interconnectedness creates a web of dependencies where actions in one sector can have 

significant ripple effects across others. 

 

In this context, decision-making face a multi-objective (MO) problem due to the complex and 

often conflicting objectives inherent in managing these resources. Addressing the nexus 

requires balancing the competing demands of each sector while considering their interrelated 

impacts on sustainability, economic growth, and social well-being. 

 

Instead of aggregating the various nexus objectives into a single scalar signal/objective for 

planning or learning purposes, we consider them individually. This approach allows the end 

user to define their own aggregation function, technically known as the utility function, based 

on their preferences. By doing so, we avoid providing an imperfect solution that would restrict 

the tool's recommendation scope. We also give more “freedom” to the users to express their 

preferences. 

 

The self-learning nexus engine is the core mechanism that supports MO decision-making in the 

SLNAE tool. The self-learning term refers to the underlying Artificial Intelligence (AI) and 

Machine Learning (ML) technology, enabling the creation of agents that autonomously learn 

(i.e. self-learning) optimal policy combinations (i.e. policy packages) to achieve the nexus-

related objectives. We propose Multi Objective (Deep) Reinforcement Learning (MODRL) as 

the foundational family of ML algorithms to implement the NXG Decision Support System 

(DSS).  

 

Each Case Study (CS) represents a unique optimization challenge, formulated as an individual 

problem to optimise in their own, unique, policy decision space. Additionally, there are three 

further layers of complexity. First, each CS includes a set of reference scenarios (RCP-SSP 

combinations), each depicting different potential future conditions. Second, the complexity 

models implemented by WP3 incorporate randomness in the input data, allowing for both 

deterministic and stochastic execution modes. Finally, one of the CSs (Inkomati) introduces an 

additional decision-making dimension: the year when a policy is applied, which we call the 

‘dynamic policies’ mode, in contrast to the ‘static mode’ with fixed policies. All these options 

are available through different implementations of the CSs’ System Dynamic Models (SDMs). 

Consequently, an agent will be trained for every combination of CS, reference scenario, 

randomness execution mode, and, for the Inkomati CS, i.e.,  the policy mode. 
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Deliverable D4.4 Core module of the self-learning nexus engine is classified in th GA as a 

"Demonstrator." This document accompanies the deliverable and offers detailed explanations 

about the algorithmic fundaments and technical aspects of the Self-Learning Nexus Engine and 

the NXG DSS. It is intended to complement the digital solutions developed from Task T4.4 

Reinforcement Learning engine. 

 

The current version of the Self-Learning Nexus Engine is embedded into the public release of 

the SLNAE at the following urls: https://slnae-dev.nexogenesis.eu or https://nepat-

dev.nexogenesis.eu. This version will be further updated with data from each CS. 

 

1.1. Disclaimer 
 

The public version of the SLNAE/NEPAT is currently under development and has been 

designated as a Beta version (Figure 1). All its modules, including the Self-Learning Nexus 

Engine and its components or inputs (i.e. SDMs, policies, goals, UI, etc) are undergoing 

continuous validation and are subject to change. The results and screenshots in this 

deliverable are provided solely to demonstrate that the Self-Learning Nexus Engine has 

been successfully developed and integrated into the SLNAE. 

 

Following the validation process, in which CSs and SHs will certify the behaviour of the 

SLNAE/NEPAT modules, the final version of the tool will be deployed. In the upcoming 

months, the Self-Learning Nexus Engine will be continuously run and adjusted to meet the final 

requirements of CSs and SHs. This process will be expedited depending on the CS. For the 

front runners, the Self-Learning Nexus Engine will be ready by August 2024 (M36), including 

the Inkomati CS. For the followers, it will be ready by December 2024 (M40).  

 

The final version of the SLNAE/NEPAT is expected to be ready by February 2025 (M42) and 

will be reported in D4.5 Final version of the self-assessment nexus engine with the 

corresponding validation (M42). This final version will include additional secondary 

functionalities that are not necessary for the success of the upcoming Workshops (WSs). with 

the CS, to be organised in collaboration with WP1 and WP5.  

 

https://slnae-dev.nexogenesis.eu/
https://nepat-dev.nexogenesis.eu/
https://nepat-dev.nexogenesis.eu/


D4.4 Core module of the self-learning nexus engine 

 

9 This project has received funding from the European Union’s Horizon 2020 research and 

innovation programme under grant agreement No 101003881 

 
Figure 1. SLNAE UI. Beta version warning. 

 

1.2. Links to the ICT4WATER Cluster 
 

WP4 is considered the ‘digital’ WP in the Nexogenesis project. Thus, it is the natural link 

between the project and the ICT4WATER Cluster1.  

 

The outcomes of the task T4.4 are specially linked to the ICT4WATER Updated Digital Water 

Action Plan2 and its ‘Intelligent and smart systems’, ‘Actor engagement and co-creation’ and 

‘Policies’ Action Groups3. 

 

With regards to the actions and activities outlined in the Digital Water Action Plan, this 

deliverable and the SLNAE/NEPAT tool (developed under WP4 in NXG) contributes to the 

following (all action numbers refer to the Digital Water Action Plan): 

- The ‘Intelligent and smart systems’ action 2 activities 1 & 2: A multi-optimization 

decision-making framework (the Self-Learning Nexus Engine), based on Deep  

Reinforcement Learning, is implemented for decision support. 

- The ‘Intelligent and smart systems’ action 5 activities 1 & 2: Uncertainty is taken into 

account in the integrated complexity science models. 

 
1 https://ict4water.eu/  
2 https://ict4water.eu/wp-content/uploads/2023/06/Update-Digital-Water-Action-Plan-V7.pdf  
3 https://ict4water.eu/action-groups/ 

https://ict4water.eu/
https://ict4water.eu/wp-content/uploads/2023/06/Update-Digital-Water-Action-Plan-V7.pdf
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- The ‘Actor engagement and co-creation’ action 1 activity 1: A public online tool (the 

SLNAE) is developed. 

-  The ‘Actor engagement and co-creation’ action 2 activities 1 & 2: Stakeholders from 

all nexus sectors are taken into account during the Nexogenesis co-creation process for 

the SLNAE design. 

- The ‘Policies’ action 5 activity 1: The SLNAE tool enables policy co-creation. 

- The ‘Policies’ action 6 activity 2: The SLNAE tool enables improved management of 

governance complexity including uncertainty and other factors. 

 

1.3. NEPAT: a new name for the SLNAE 
 

During the initial period of the project, it was necessary to explain the definition and meaning 

of the SLNAE to non-technical audiences (e.g. stakeholders) on multiple occasions. The term 

"Self-Learning" is a technical concept related to AI and ML algorithms involved in its 

development, which can be difficult to understand and may generate confusion. Additionally, 

the acronym SLNAE and the full name are not easy to pronounce. Therefore, it was decided 

with the NXG consortium that a new name was needed. 

 

WP4 led the initiative to define a new name that would be self-explanatory and avoid technical 

jargon, while incorporating Nexogenesis-related concepts such as "policy assessment" or 

"impact". Several options were proposed under the cocreation framework and put to a vote, and 

eventually, the name "Nexogenesis - Nexus Policy Assessment Tool (NEPAT)" was selected 

as the best option. The new name is simpler, easier to pronounce, and more reflective of the 

tool's and project’s purpose. In order to be consistent with the GA and other official 

documentation, both names are valid to refer to the SLNAE. 

 

Thus, the SLNAE tool is referred to as either SLNAE or NEPAT indiscriminately. 

 

1.4. Document structure 
 

The document is structured as follows: Section 2 describes the requirements for the Self-

Learning Nexus Engine implementation. Section 3 briefly reviews the state of the art in multi-

objective optimization and multi-objective reinforcement learning within the nexus domain, 

highlighting the advantages of using reinforcement learning in the NXG DSS. Section 4 

establishes the foundational knowledge and mathematical formulation in the multi-objective 

optimization domain and introduces the selected MORL algorithms. Section 5 presents the 

technical design of the NXG decision-making problem and its formalization. Section 6 

showcases the initial results of these implementations. Finally, Section 7 demonstrates the 

current integration of the Self-Learning Nexus Engine into the NEPAT UI, and Section 8 

concludes with the findings and outlines the next steps. 
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2. Requirements for the 

development of the self-learning 

nexus engine  
 

In order to develop the NEPAT’s self-learning nexus engine and DSS (step 3 in Figure 2 - 

Right), the key following components (Figure 2 - Left) have been previously developed (steps 

1 and 2), by other technical WPs, through the co-creation framework (Figure 2 - Right) for 

Nexus Policy packages identification: 

 

- Policies 

- Nexus Indicators 

- Nexus Policy Goals, years and targets 

- System Dynamics Models (SDM)s 

 

All these components have been provided by each of the five NXG CSs and have been 

integrated into the NXG Simulation Policy Framework (see deliverable D4.3 Simulation Policy 

Framework). The aim of the DSS is to identify which policy combinations (i.e., policy 

packages) are suitable for achieving the goals' targets. This objective is further explained and 

technically formalized later in this document. To measure the impact of each policy package, 

an SDM is required. Policies have been implemented in the SDMs, so their impact and trade-

offs can be quantitatively measured using the Nexus indicators, which are also implemented in 

the SDMs. A Nexus Goal is linked to one of these indicators, making it measurable.  

 

All these components are available in the Nexogenesis Internal Data Repository or Data Lake 

(see D4.2 Data Lake for data sharing). WP4 collects all these resources and uses them to 

develop the NEPAT. 

 

WP1 & SHs

WP2 WP4

Nexus policies

Nexus indicators

WP3
Reference pathway 
simulations

WP5 & CSs

CSs metadata

CSs translations

SDMs and 
validation data

Nexus Policy Goals and Policy Targets

WP5 & CSs

Figure 2. Left: NXG cross-WP data pipelines in the Internal Data Repository. Right: NXG co-creation framework for Nexus Policy packages 

identification. Source: D4.1 

Definition of Nexus Policies and 
Targets 

(WP1, WP5, CSs & SHs)

Integration of Nexus Policies 
and Indicators into 

Complexity Science tools 

(WP2 & WP3)

Identification of optimal 
Nexus Policy packages 

(WP4)

Evaluation of proposed 
policy packages 

(WP1, WP5, CSs & SHs)

1

2

3

4
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2.1. Policies 
 

Each CS has proposed an arbitrary number of policies, based on their interest and goals, and 

the final analysis they want to carry out. Table 1 summarizes the most relevant information, 

from a decision-making multi-objective point of view, associated with the available policies, as 

how many of them have been proposed, how many have been finally implemented or its type, 

among other information. 

 
Table 1. NEPAT available policies 

CS N. of 

regions 

N. of proposed 

policies 

N. of proposed policies 

at region level 

N. of implemented 

policies 

Incompatible 

policies 

Type of policies 

(Fixed/Dynamic) 

Nestos 2+1 10 5 12 No F 

Lielupe 2+1 6 5 24 Yes F 

Jiu 1 7 - 18 Yes F 

Adige 1 12 - 12 No F 

Inkomati 1 11 - 11 No F/D 

 

Given that some CS are transboundary, there are further considerations regarding policies, 

because the countries involved in each CS may have/select different policies, applying only to 

their subregion.  Hence, there are two CSs (Nestos and Lielupe) that have split their 

implementation and offer sub-regions, or sub-basins, in their SDMs. In Lielupe, the regions of 

Latvia and Lithuania have been separately considered as the system sub-regions. In Nestos, 

although there are 14 sub-basins identified in the SDMs, policies can only be applied to the 

sub-regions of Bulgaria or Greece. In these cases, we consider there to be three regions: two 

sub-regions plus the case study as a whole. Therefore, some policies can be applied at a regional 

level, allowing decision-making and trade-off analysis at a spatial scale as well. 

 

In some cases, CSs have proposed policies that can be modulated (Figure 3). For example, 

Policy P5 in the Lielupe CS, targets the reduction of Greenhouse Gas (GHG) emissions. This 

policy affects the fraction of grasslands to renewables parameter in the SDMs, and it is 

implemented as a range between 0 and 1, or as a percentage. Initially, we discretize this range 

into three values: 0.33, 0.66, and 1, resulting in three additional policies. Thus, technically 

speaking, there may be more implemented policies than those originally proposed. Later, this 

discretization can be modified based on SHs’ feedback. Continuing with this example, these 

additional policies cannot be applied simultaneously because they modulate the same parameter 

and correspond to the same real policy. We represent this restriction by marking them as 

incompatible policies. 
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Figure 3. NEPAT UI. Example of Policy modulation 

In other cases, like the Nestos CS, there were some policies which were described as appliable 

to the whole basin, while being implemented in the SDM as two variables (one for each region). 

In these cases, we split the policy into one for each region. 

 

Finally, there are several ways to classify policies, such as by the direct nexus sector affected, 

the indirect sectors, or the way the policies function. Here, we classify the proposed policies 

based on whether they can be applied at any custom time between 2015 and 2050 or not. In the 

former case, we mark them as ‘Dynamic policies’, enabling decision-making and trade-off 

analysis at a temporal scale, and in the latter case as ‘Fixed policies’. 

 

Additional information about policies, policy integration, and the policy simulation framework 

can be found in D4.3 Simulation Policy Framework. 

 

2.2. Policy packages 
 

The number of possible policy combinations (i.e. policy packages), considering both the 

number of implemented policies and their compatibility, can be computed approximately. Table 

2 provides an overview of these possible policy packages, illustrating the variety of 

combinations available based on the given policies. These computations include both valid and 

invalid policy packages, since the presented algorithms in section 4.3 don’t have action masking 

implemented, meaning all combinations, whether valid or invalid, can be explored by the agents 

during the training phase. Hence, these would be the numbers that accurately describe the 

magnitude of the problem for each case study. 
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Table 2. CS possible combinations with fixed policies 

CS Policy combinations 

Nestos 28,672 

Lielupe 218,103,808 

Jiu 2,621,440 

Adige 28,672 

Inkomati 13,312 

 

From all the presented CSs, Inkomati provided SDMs with dynamic policies (Table 1), meaning 

that they can be configured to start their application in any set time in the simulation. For this 

case, we have computed the combinations for three scenarios, ordered by the granularity of the 

policy application time: 

• Policy application every 5 years: meaning each policy can be applied in 2015, 2020, 

and so on up to 2050, providing 7 possible years to choose from. 

• Policy application yearly: each policy can be applied in any of the 35 years of the 

simulation. 

• Policy application monthly: each policy can be applied in any of the 420 months of the 

simulation. 

 
Table 3. Inkomati combinations with dynamic policies 

Scenario Policy combinations 

Policy application every 5 years 5.97E+24 

Policy application yearly 1.52E+118 

Policy application monthly 1.32E+1394 

 

Table 3 shows the number of combinations for each of the considered scenarios. Given the size 

and complexity of these combination counts, tabular methods are impractical due to their 

inability to scale to these magnitudes. Therefore, we will employ Deep Reinforcement Learning 

(Deep RL) algorithms, which are better suited for handling large-scale problems. Although the 

second and third scenarios are highly detailed and case-specific, possibly with no real nexus 

application, they exemplify a significant level of complexity. Therefore, they can effectively 

highlight and demonstrate the advantages of the methodology introduced in the NXG project, 

particularly in this deliverable. 

 

2.3. Goals 
 

Each CS has proposed an arbitrary number of goals as well, based on its interest and objectives, 

and the final analysis they want to carry out. Table 4 summarizes the most relevant information, 

from a decision-making multi-objective point of view, associated with the available goals, as 

how many of them have been proposed or how many have been finally implemented, among 

other information. 



D4.4 Core module of the self-learning nexus engine 

 

15 This project has received funding from the European Union’s Horizon 2020 research and 

innovation programme under grant agreement No 101003881 

 
Table 4. NEPAT available goals 

CS N. of proposed 

goals 

N. of proposed goals 

at region level 

N. implemented 

goals 

N. of goals affected by 

stochastic variables 

Nestos 5 5 30 - 

Lielupe 4 2 5 1 

Jiu 7 - 9 0 

Adige 3 - 3 1 

Inkomati 14 - 14 9 

 

Similarly to the policies: i) goals can also be set at the sub-region level, and ii) there may be 

more implemented goals than originally proposed. For example, Goal G1 in the Jiu CS aims 

for an 87% reduction in GHG emissions by 2030 and a 97% reduction by 2050. Two additional 

goals have been implemented, each corresponding to one of these pairs of years and targets. 

 

Finally, it is important to understand whether the proposed goals are influenced by the 

underlying data stochasticity implemented in the SDMs for proper consideration. 

 

Additional information about goals, goals integration, and the policy simulation framework can 

be found in D4.3 Simulation Policy Framework. 

 

2.3.1. Goal targets and years 
 

Goals are defined as a three-tuple structure. First, the SDM indicator linked to the goal, which 

must be used to measure its performance and achievement. Second, the target value (e.g. an 

absolute amount, a percentage) is used as a threshold to evaluate the achievement of the 

corresponding goal. And third, a specific year between 2015 and 2050 when the goal 

achievement must be evaluated. 

 

 
Figure 4, NEPAT UI goal attributes view 

 

For example, in the Inkomati CS, Goal 4 is defined by the indicator "Domestic water 

withdrawal," with a target value of 15% to be achieved by a specified year. Figure 4 illustrates 

how this goal is represented in the NEPAT UI.  
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3. A nexus multi-objective 

approach 
 

Multi-objective optimization (MOO), also known as multi-criteria or multi-attribute 

optimization, deals with problems involving more than one objective function to be optimized 

simultaneously. These problems are ubiquitous in engineering, economics, logistics, and other 

fields where trade-offs between conflicting objectives need to be made, such as the nexus. 

 

This is a reduced version because these results have been/will be submitted for publication in a 

peer reviewed journal. For more information please contact the authors  - Lluís Echeverria 

Rovira (Eurecat) lluis.echeverria@eurecat.org. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mailto:lluis.echeverria@eurecat.org
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4. Multi-objective RL: problem 

setting, taxonomy and 

algorithms 
 

This section first introduces the multi-objective problem setting, extending the single-objective 

Markov Decision Process (MDP) formalization. Second it presents the taxonomy utilized 

throughout the rest of the document, and final, it describes the MORL and DMORL algorithms 

implemented to solve the proposed nexus decision-making problem. 

 

A deep introduction to MDPs and RL can be found in [19]. The following sub-sections are 

based on [25] and [20]. 

 

4.1. Multi-objective problem setting 
 

Extending the MDP formalization presented in D4.1 section 6.2.5.1 MDP formalization, we 

introduce the Multi-Objective Markov Decision Process (MOMDP) as the proposed 

mechanism to support decision-making in the nexus.  

 

A MOMDP is represented by the tuple 〈𝑆, 𝐴, 𝑇, 𝛾, 𝜇, 𝑅〉, where: 

• 𝑆 is the state space 

• 𝐴 is the action space 

• 𝑇 ∶ 𝑆 ×  𝐴 ×  𝑆 → [0,1] is a probabilistic transition function 

• 𝛾 ∈ [0, 1) is a discount factor 

• 𝜇 ∶ 𝑆 → [0,1] is a probability distribution over initial states 

• 𝑅 ∶ 𝑆 ×  𝐴 ×  𝑆 →  ℝ𝑑 is a vector-valued reward function, specifying the immediate 

reward for each of the considered 𝑑 ≥ 2 objectives 

 

The key distinction between a single-objective MDP and MOMDP lies in the vector-valued 

reward function. In a MOMDP, this function provides a numerical feedback signal for each 

= (𝑅1, 𝑅2, … , 𝑅𝑑)𝑡

Figure 5. Multi-Objective Reinforcement Learning agent-environment interaction flow 
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objective under consideration, resulting in a reward vector whose length matches the number 

of objectives (Figure 5). 

 

This is a reduced version because these results have been/will be submitted for publication in a 

peer reviewed journal. For more information please contact the authors  - Lluís Echeverria 

Rovira (Eurecat) lluis.echeverria@eurecat.org. 

 

4.2. Multi-objective taxonomy 
 

This section introduces various concepts from the multi-objective optimization domain that will 

be utilized later in the document. Building on the previously presented term, the utility function, 

two extensions are defined. These extensions form the basis for the different types of solution 

sets that can be derived. 

 

4.2.1. A Monotonically increasing utility function 
 

A monotonically increasing utility function, 𝑢, follows the rule that if a policy enhances one or 

more of its objectives without diminishing any others, the scalarized value will also increase. 

 

(∀𝑖 ∶  𝑉𝑖
𝜋 ≥ 𝑉𝑖

𝜋′) ∧  (∃𝑖 ∶  𝑉𝑖
𝜋 > 𝑉𝑖

𝜋′) ⇒ 𝑢(𝑉𝜋) ≥ 𝑢(𝑉𝜋′) 

 

A monotonically increasing utility function can represent both linear (with nonzero positive 

weights) and non-linear user preferences. Monotonicity in the utility function is a minimal 

assumption for MORL, as it aligns with the fundamental definition of an objective: we always 

seek to maximize value in any of the objectives. 

 

4.2.2. A linear utility function 
 

A linear utility function calculates the inner product of a weight vector 𝑤 and a value vector 

𝑉𝜋. 

𝑢(𝑉𝜋) = 𝑤𝑇𝑉𝜋 

 

Each element of the weight vector 𝑤 specifies how much one unit of value for the corresponding 

objective contributes to the scalarized value. The elements of the weight vector are all positive 

real numbers and are constrained to sum to 1. 

 

 

 

mailto:lluis.echeverria@eurecat.org


D4.4 Core module of the self-learning nexus engine 

 

19 This project has received funding from the European Union’s Horizon 2020 research and 

innovation programme under grant agreement No 101003881 

4.2.3. Solution sets 
 

In single-objective RL problems, there exists a unique optimal value 𝑉∗, and there can be 

multiple optimal policies 𝜋∗ that all achieve this value. The goal in single-objective RL is 

typically to learn an optimal policy. However, in MOO cases, without any additional 

information about the user’s utility, there can be multiple potentially optimal value vectors 𝑉. 

Therefore, it is necessary to consider different sets of potentially optimal value vectors and 

policies. 

 

The selection of the solution set is crucial for the efficiency of algorithms used in solving MO 

problems, as it requires computing all the policies within these sets. 

 

4.2.3.1. The undominated set 

 

The undominated set 𝑈(Π) consists of the subset of all possible policies Π and their associated 

value vectors for which there exists a potential utility function 𝑢 that achieves the maximum 

scalarized value. 

𝑈(Π) = {𝜋 ∈ Π | ∃𝑢, ∀𝜋′ ∈ Π ∶  𝑢(𝑉𝜋) ≥ 𝑢(𝑉𝜋′)} 

 

However, the undominated set might include redundant policies. These are policies that are 

optimal for a particular utility function, but there are other policies that are also optimal for the 

same utility function. In such cases, it is unnecessary to keep all these policies to maintain 

optimal utility. 

 

4.2.3.2. The coverage set 

 

A set 𝐶𝑆(Π) is considered a coverage set if it meets two conditions: it must be a subset of 𝑈(Π), 

and, for every 𝑢 in, it includes a policy with the highest scalarized value. 

 

𝐶𝑆(Π) ⊆ 𝑈(Π) ∧  (∀𝑢, ∃𝜋 ∈  𝐶𝑆(Π), ∀𝜋′ ∈ Π ∶  𝑢(𝑉𝜋) ≥ 𝑢(𝑉𝜋′)) 

 

4.2.3.3. The Pareto Front 

 

In those cases where the utility function 𝑢 is any monotonically increasing function, then the 

Pareto Front (PF) is the undominated set 𝑈(Π). 

 

𝑃𝐹(Π) = {𝜋 ∈ Π | ∄𝜋′ ∈ Π ∶  𝑉𝜋′ ≻𝑝 𝑉𝜋} 

 

where ≻𝑝 is the Pareto dominance relation 

 

𝑉𝜋 ≻𝑝 𝑉𝜋′
⇔ (∀𝑖 ∶  𝑉𝑖

𝜋 ≥ 𝑉𝑖
𝜋′

) ∧ (∃𝑖 ∶  𝑉𝑖
𝜋 > 𝑉𝑖

𝜋′
) 
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In other words, the Pareto front is constituted by all the policies such that there is no other 

policy with value that is equal of better in all the objectives. A collection of policies whose 

value functions align with the PF is known as a Pareto Coverage Set (PCS). 

 

4.2.3.4. The convex hull 

 

The convex hull (CH) consists of the subset of Π for which there exists a weight vector 𝑤 (for 

a linear utility function) such that the linearly scalarized value is maximized. It is the 

undominated set for linear utility functions. 

 

𝐶𝐻(Π) = {π ∈ Π | ∃𝑤, ∀π′ ∈ Π: 𝑤𝑇𝑉π ≥ 𝑤𝑇𝑉π′
} 

 

4.2.3.5. The convex coverage set 

 

A set CCS(Π) is a convex coverage set if it is a subset of CH(Π) and if, for every weight vector, 

it includes a policy whose linearly scalarized value is maximized. 

 

𝐶𝐶𝑆(Π) ⊆ CH(Π) ∧ (∀w, ∃π ∈ CCS(Π), ∀π′ ∈ Π: w⊤Vπ ≥ w⊤𝑉π′
) 

 

4.3. Multi-objective Reinforcement 

learning algorithms 
 

Multi-objective reinforcement learning encompasses a diverse array of methodologies, from 

bandit problems to deep reinforcement learning architectures. For a thorough review see [12]. 

A prevalent and widely adopted approach in MORL is extending established single-objective 

model-free value-based methods like Q-learning [26] to handle multiple objectives 

simultaneously.  

 

Some examples of this practice include MO Q-Learning, MPMO Q-Learning [27], Pareto Q-

Learning [25] and MPQ-learning [28]. These methods are restricted to tabular representations 

of Q-values, limiting their applicability to more complex problems. For these types of problems, 

some DRL algorithms have been adapted to multiple objectives. Most of these methods extend 

the single objective DQN architecture and some examples are Pareto DQN [29] and Envelope 

Q-learning [30]. 

 

There are also some alternatives to the seen value-based approaches, adopting policy search 

algorithms. Some examples are the Expected Utility Policy Gradient (EUPG) implementation 

by Roijers et al. [31], the multi-objective categorical Actor-Critic (MOCAC) by Reymond et 

al. [32] or the multi-objective extension of PPO by Xu et al [33]. 



D4.4 Core module of the self-learning nexus engine 

 

21 This project has received funding from the European Union’s Horizon 2020 research and 

innovation programme under grant agreement No 101003881 

 

For the Self-Learning Nexus Engine, we have considered the tabular method Pareto Q-learning 

and the DRL algorithm Envelope Q-learning implementations from MORL-Baselines [34] 

Python library. Considering the number of goals we have (Table 4), we have focused on the 

algorithms that do not impose explicit limitations on the number of objectives. Finally, we have 

adapted the available implementations to match the NXG case and its characteristics.  

 

The usage of Pareto Q-learning will allow us to explicitly capture Pareto-optimal solutions, 

allowing a thorough modelling of the trade-offs between different objectives. Also, since its 

tabular nature, it will allow us to have a more variate range of recommendations. On the other 

hand, Envelope Q-learning focuses on efficiently representing the envelope of the Pareto front, 

simplifying the computational complexity associated with maintaining multiple solutions. This 

method scales effectively to larger state-action spaces, being the best option for solving the 

bigger problems presented in section 2.2. 

 

This is a reduced version because these results have been/will be submitted for publication in a 

peer reviewed journal. For more information please contact the authors  - Lluís Echeverria 

Rovira (Eurecat) lluis.echeverria@eurecat.org. 
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5. The Nexogenesis decision-

making problem formalization 
 

[12] and [20] propose six scenarios where a multi-objective approach is required. The NXG 

decision-making case falls into the decision support scenario, where the user’s preferences are 

unknown or difficult to specify. 

 
Figure 6. Decision support scenario diagram, extracted from [X] 

As seen in Figure 6, in this scenario, since a priori we don’t know the user’s preferences, we 

compute a solution set with the Pareto front solutions to be able to respond with an optimal 

solution regardless of the preferences. Once the user wants a recommendation, he provides its 

preferences and with those set, the selection phase is run, obtaining the best solution according 

to the set preferences. 

 

The MOMDP in the NXG decision-making problem is presented as an episodic case where, 

given an initial situation, the agent must provide the undominated set solutions. Two problem 

variants are proposed, one considering deterministic environments (i.e. deterministic SDMs), 

and the other considering stochastic environments. In the first case, the average reference 

scenario is used. In the second case, available data stochasticity in SDMs is not aggregated, 

thus a more challenging situation is presented. Further details on how these environments are 

constructed can be found in D4.3.  

 

Each project CS represents a unique optimization problem. Additionally, there are three further 

layers of complexity. First, each CS includes a set of reference scenarios (RCP-SSP 

combinations), each depicting different potential future conditions. Second, the complexity 

models implemented by WP3 incorporate randomness in the input data, allowing for both 

deterministic and stochastic execution modes. Finally, one of the CSs (Inkomati) introduces an 

additional decision-making dimension: the year when a policy is applied, which we call the 

‘dynamic policies’ mode, in contrast to the ‘static mode’ with fixed policies. All these options 

are available through different implementations of the CS’ System Dynamic Models (SDMs). 

Consequently, an agent will be trained for every combination of CS, reference scenario, 

randomness execution mode, and, for the Inkomati CS, the policy mode. 

 

This is a reduced version because these results have been/will be submitted for publication in a 

peer reviewed journal. For more information please contact the authors  - Lluís Echeverria 

Rovira (Eurecat) lluis.echeverria@eurecat.org. 
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6. Initial results 
 

Given the problems presented in section 2.2, we applied the proposed mechanisms to the 

Lielupe, Jiu and Inkomati CSs with fixed policies using the RCP26-SSP2 scenario and 

deterministic SDMs. Additionally, we also ran some initial processes for the Inkomati CS with 

dynamic policies every 5 years. We will continue adjusting the framework, training agents and 

validating their performance over the coming months. 

 

This is a reduced version because these results have been/will be submitted for publication in a 

peer reviewed journal. For more information please contact the authors  - Lluís Echeverria 

Rovira (Eurecat) lluis.echeverria@eurecat.org. 
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7. The NEPAT DSS 
 

The trained agents discussed in the previous section have been integrated into NEPAT to 

validate the recommendation pipeline. A specific view in the NEPAT UI, the Decision Support 

System view (Figure 7), has been deployed, allowing users to interact with the recommendation 

service. 

 

 
Figure 7. NEPAT UI. Decision Support System view 

The view is divided into two sections. On the left side (Figure 8), the user can determine their 

preferences to build a customized utility function. Various functionalities are provided in this 

section. First, the user may choose to obtain recommendations based on a pre-defined policy 

package. This option sets the initial state (starting policy package) from which the 

corresponding agent will provide recommendations. Second, and most importantly, the user 

can define the goals importance by setting different weights using slider mechanisms, one per 

goal. Next, the user can specify the limit size of the recommended policy package. Finally, as 

an additional filter, the recommended policies can be limited by sector or region (in those sub-

regional contexts) of application. 
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Figure 8. NEPAT UI. Decision Support System view. Zoom on preferences section. 

Once the custom utility function is configured, the user must press the “Get Policy Package 

Recommendation” button. This action will trigger the DSS to obtain the recommendations, 

which will be listed on the left side of the screen (Figure 9). 

 

 
Figure 9. NEPAT UI. Decision Support System view providing policy package recommendations 

The recommended policy packages are listed in a table (Figure 10), which can be expanded to 

obtain further information about the impact of these policies if applied. First, the achievement 

of goals is assessed, and second, the status of the nexus footprint indicators is provided. This 
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approach enables a comprehensive overview of the policy package impact across the entire 

nexus.  

 

 
Figure 10. NEPAT UI. Decision Support System view providing policy package recommendations. Zoom on 

recommendations table. 

If the user decides to accept any of the recommendations, the proposed policy package can be 

directly imported into the Policy Package Builder section by clicking the apply button. This 

allows the user to continue analyzing the impacts of that policy package through the NEPAT 

functionalities. 
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8. Conclusions 
 

The AI algorithmic foundations of the Self-Learning Nexus Engine have been formalized, 

implemented, tested, and initially validated. Additionally, the Decision Support System service 

has been successfully implemented and deployed, achieving one of the main objectives of task 

T4.4 and WP4. 

 

The self-learning nexus engine is the core mechanism that supports multi-objective decision-

making in the SLNAE/NEPAT tool. The self-learning term refers to the underlying Artificial 

Intelligence (AI) and Machine Learning (ML) technology, enabling the creation of agents that 

autonomously learn (i.e. self-learning) optimal policy combinations (i.e. policy packages) to 

achieve the nexus-related objectives. We discuss and propose Multi Objective (Deep) 

Reinforcement Learning (MODRL) as the foundational family of ML algorithms to implement 

the NXG DSS.  

 

Until M40 (end of task T4.4) this framework will be run for all CSs since each of the represents 

a unique optimization problem. Additionally, there are three further layers of complexity. First, 

each CS includes a set of reference scenarios (RCP-SSP combinations), each depicting different 

potential future conditions. Second, the complexity models implemented by WP3 incorporate 

randomness in the input data, allowing for both deterministic and stochastic execution modes. 

Finally, one of the CSs (Inkomati) introduces an additional decision-making dimension: the 

year when a policy is applied, which we call the ‘dynamic policies’ mode, in contrast to the 

‘static mode’ with fixed policies. All these options are available through different 

implementations of the CSs’ System Dynamic Models (SDMs). Consequently, an agent will be 

trained for every combination of CS, reference scenario, randomness execution mode, and, for 

the Inkomati CS, the policy mode, complementing those already presented. 

 

The current version of the Self-Learning Nexus Engine is embedded in the public release of the 

SLNAE/NEPAT at the following urls: https://slnae-dev.nexogenesis.eu or https://nepat-

dev.nexogenesis.eu. 

 

Since the Self-Learning Nexus Engine inputs (i.e. the SDMs, the policies, the goals or the Nexus 

footprint) are under constant validation, the current published version of the service is 

designated as a Beta version and is subject to change. The DSS will be ready by August 2024 

(M36) for the frontrunners CS (including the Inkomati CS), and for the followers CSs, it will 

be ready by December 2024 (M40). Final policy package recommendations will be reported in 

the corresponding WP5 deliverables (D.5.2 to D5.6) (M42). 

 

The final version of the SLNAE is expected to be ready by February 2025 (M42) and will be 

reported in D4.5 Final version of the self-assessment nexus engine with the corresponding 

validation (M42). 

 

  

https://slnae-dev.nexogenesis.eu/
https://nepat-dev.nexogenesis.eu/
https://nepat-dev.nexogenesis.eu/
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