

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant

agreement No 101003881

D4.4 Core module of the self-
learning nexus engine

Lead: Lluís Echeverria (Eurecat)
Date : 30/06/2024

D4.4 Core module of the self-learning nexus engine

2 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Project Deliverable

Project Number Project Acronym Project Title

101003881

NEXOGENESIS Facilitating the next generation of effective
and intelligent water-related policies,
utilizing artificial intelligence and
reinforcement learning to assess the water-
energy-food-ecosystem (WEFE) nexus

Instrument: Thematic Priority

H2020 RIA LC-CLA-14-2020

Title

D4.4 Core module of the self-learning nexus engine

Contractual Delivery Date Actual Delivery Date

M34: June 2024 M34

Start Date of the project Duration

01 September 2021 48 months

Organisation name of lead contractor for this deliverable Document version

EUT 1.0

Dissemination level Deliverable Type

Public Demonstrator

Authors (organisations)

Lluís Echeverria (EUT), Chaymaa Dkouk (EUT), and Nuria Nievas (EUT)

Reviewers (organisations)

Lydia Vamvakeridou-Lyroudia (KWR)

D4.4 Core module of the self-learning nexus engine

3 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Abstract

Deliverable D4.4 Core module of the self-learning nexus engine is classified as a

"Demonstrator." This document accompanies the deliverable and offers detailed explanations

about the algorithmic fundaments and technical aspects of the Self-Learning Nexus

Assessment Engine (SLNAE) and the NXG DSS. It is intended to complement the digital

solutions developed from Task T4.4 Reinforcement Learning engine.

The self-learning nexus engine is the core mechanism that supports multi-objective decision-

making in the SLNAE tool. The self-learning term refers to the underlying Artificial

Intelligence (AI) and Machine Learning (ML) technology, enabling the creation of agents

that autonomously learn (i.e. self-learning) optimal policy combinations (i.e. policy

packages) to achieve the nexus-related objectives. We propose Multi Objective (Deep)

Reinforcement Learning (MODRL) as the foundational family of ML algorithms to

implement the NXG Decision Support System (DSS).

The current version of the Self-Learning Nexus Assessment Engine is embedded into the

public release of the SLNAE at the following urls: https://slnae-dev.nexogenesis.eu or

https://nepat-dev.nexogenesis.eu.

The SLNAE acronym, which is the reference to this tool in the Grant Agreement, has been

changed to NEPAT (Nexus Policy Assessment Tool), during the project. This was decided

because it was easier to pronounce than SLNAE and also it reflected better for the general

audience the content of the tool. In this document, the two acronyms SLNAE and NEPAT

are both being used indiscriminately and they refer to the same tool. This has been done on

purpose, because SLNAE is mentioned in the Grant Agreement and also because several

related actions have started and happened under with the tool named SLNAE, while now,

more recent activities are referring to NEPAT and this document is an intermediate report for

this tool. By the end of the project, NEPAT will be the name of this tool.

Related Deliverables:

D3.4 Complexity science models implemented for all the Case Studies including explanatory

manuals

D3.6 Sensitivity/Uncertainty Analysis Report

D4.1 Self-learning nexus engine specifications and technical design

D4.3. Simulation Policy Framework

Keywords

SLNAE; NEPAT, Nexus Decision Support System, Multi-Objective optimization, Multi-Objective Deep

Reinforcement Learning

https://slnae-dev.nexogenesis.eu/
https://nepat-dev.nexogenesis.eu/

D4.4 Core module of the self-learning nexus engine

4 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Abbreviation/Acronyms
CCS Convex Coverage Set

CS Case Study

DMORL Deep Multi-Objective reinforcement learning

DMP Data Management Plan

DRL Deep Reinforcement Learning

DSS Decision Support System

FNRL Fingerprint networked reinforcement learning

GUI/UI Graphical User Interface/User Interface

GA Grant Agreement

ICT Information and Communication Technologies

IDR Internal Data Repository

JSON JavaScript Object Notation

MDP Markov Decision Process.

ML Machine Learning

MOMDP Multi-Objective Markov Decision Process

MOO Multi-objective optimisation

MORL Multi-objective reinforcement learning

NEPAT Nexus Policy Assessment Tool

NXG Nexogenesis project

PCS Pareto Coverage Set

POMOMDP Partially Observable Multi-Objective Markov Decision Process

PQL Pareto Q learning

R Reward function

RL Reinforcement Learning

SDM System Dynamic Model

SLNAE Self-Learning Nexus Assessment Engine

SH Stakeholder

RP Reference Pathway

WEF Water-Energy-Food (Nexus)

WEFE Water-Energy-Food-Ecosystem (Nexus)

WP Work Package

D4.4 Core module of the self-learning nexus engine

5 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Contents

Project Deliverable ... 2

Abbreviation/Acronyms ... 4

Contents .. 5

Figures .. 6

1. Introduction ... 7

1.1. Disclaimer .. 8

1.2. Links to the ICT4WATER Cluster .. 9

1.3. NEPAT: a new name for the SLNAE .. 10

1.4. Document structure .. 10

2. Requirements for the development of the self-learning nexus engine 11

2.1. Policies ... 12

2.2. Policy packages ... 13

2.3. Goals .. 14

2.3.1. Goal targets and years .. 15

3. A nexus multi-objective approach .. 16

4. Multi-objective RL: problem setting, taxonomy and algorithms 17

4.1. Multi-objective problem setting .. 17

4.2. Multi-objective taxonomy ... 18

4.2.1. A Monotonically increasing utility function .. 18

4.2.2. A linear utility function .. 18

4.2.3. Solution sets ... 19

4.3. Multi-objective Reinforcement learning algorithms ... 20

5. The Nexogenesis decision-making problem formalization .. 22

6. Initial results .. 23

7. The NEPAT DSS .. 24

8. Conclusions ... 27

9. References ... 28

D4.4 Core module of the self-learning nexus engine

6 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Figures

Figure 1. SLNAE UI. Beta version warning. ... 9

Figure 2. Left: NXG cross-WP data pipelines in the Internal Data Repository. Right: NXG co-

creation framework for Nexus Policy packages identification. Source: D4.1 11

Figure 3. NEPAT UI. Example of Policy modulation ... 13

Figure 4, NEPAT UI goal attributes view .. 15

Figure 6. Multi-Objective Reinforcement Learning agent-environment interaction flow 17

Figure 7. Decision support scenario diagram, extracted from [X] ... 22

Figure 17. NEPAT UI. Decision Support System view ... 24

Figure 18. NEPAT UI. Decision Support System view. Zoom on preferences section. 25

Figure 19. NEPAT UI. Decision Support System view providing policy package

recommendations ... 25

Figure 20. NEPAT UI. Decision Support System view providing policy package

recommendations. Zoom on recommendations table. .. 26

D4.4 Core module of the self-learning nexus engine

7 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

1. Introduction

The WEFE nexus framework highlights the intricate linkages between water, energy, food and

ecosystems dominated by complexity and modulated by climatic and socio-economic drivers.

For instance, water is essential for agriculture (food production) and energy generation

(hydropower and cooling in thermal power plants). Conversely, energy is needed for water

extraction, treatment, and distribution, as well as for food production and processing. This

interconnectedness creates a web of dependencies where actions in one sector can have

significant ripple effects across others.

In this context, decision-making face a multi-objective (MO) problem due to the complex and

often conflicting objectives inherent in managing these resources. Addressing the nexus

requires balancing the competing demands of each sector while considering their interrelated

impacts on sustainability, economic growth, and social well-being.

Instead of aggregating the various nexus objectives into a single scalar signal/objective for

planning or learning purposes, we consider them individually. This approach allows the end

user to define their own aggregation function, technically known as the utility function, based

on their preferences. By doing so, we avoid providing an imperfect solution that would restrict

the tool's recommendation scope. We also give more “freedom” to the users to express their

preferences.

The self-learning nexus engine is the core mechanism that supports MO decision-making in the

SLNAE tool. The self-learning term refers to the underlying Artificial Intelligence (AI) and

Machine Learning (ML) technology, enabling the creation of agents that autonomously learn

(i.e. self-learning) optimal policy combinations (i.e. policy packages) to achieve the nexus-

related objectives. We propose Multi Objective (Deep) Reinforcement Learning (MODRL) as

the foundational family of ML algorithms to implement the NXG Decision Support System

(DSS).

Each Case Study (CS) represents a unique optimization challenge, formulated as an individual

problem to optimise in their own, unique, policy decision space. Additionally, there are three

further layers of complexity. First, each CS includes a set of reference scenarios (RCP-SSP

combinations), each depicting different potential future conditions. Second, the complexity

models implemented by WP3 incorporate randomness in the input data, allowing for both

deterministic and stochastic execution modes. Finally, one of the CSs (Inkomati) introduces an

additional decision-making dimension: the year when a policy is applied, which we call the

‘dynamic policies’ mode, in contrast to the ‘static mode’ with fixed policies. All these options

are available through different implementations of the CSs’ System Dynamic Models (SDMs).

Consequently, an agent will be trained for every combination of CS, reference scenario,

randomness execution mode, and, for the Inkomati CS, i.e., the policy mode.

D4.4 Core module of the self-learning nexus engine

8 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Deliverable D4.4 Core module of the self-learning nexus engine is classified in th GA as a

"Demonstrator." This document accompanies the deliverable and offers detailed explanations

about the algorithmic fundaments and technical aspects of the Self-Learning Nexus Engine and

the NXG DSS. It is intended to complement the digital solutions developed from Task T4.4

Reinforcement Learning engine.

The current version of the Self-Learning Nexus Engine is embedded into the public release of

the SLNAE at the following urls: https://slnae-dev.nexogenesis.eu or https://nepat-

dev.nexogenesis.eu. This version will be further updated with data from each CS.

1.1. Disclaimer

The public version of the SLNAE/NEPAT is currently under development and has been

designated as a Beta version (Figure 1). All its modules, including the Self-Learning Nexus

Engine and its components or inputs (i.e. SDMs, policies, goals, UI, etc) are undergoing

continuous validation and are subject to change. The results and screenshots in this

deliverable are provided solely to demonstrate that the Self-Learning Nexus Engine has

been successfully developed and integrated into the SLNAE.

Following the validation process, in which CSs and SHs will certify the behaviour of the

SLNAE/NEPAT modules, the final version of the tool will be deployed. In the upcoming

months, the Self-Learning Nexus Engine will be continuously run and adjusted to meet the final

requirements of CSs and SHs. This process will be expedited depending on the CS. For the

front runners, the Self-Learning Nexus Engine will be ready by August 2024 (M36), including

the Inkomati CS. For the followers, it will be ready by December 2024 (M40).

The final version of the SLNAE/NEPAT is expected to be ready by February 2025 (M42) and

will be reported in D4.5 Final version of the self-assessment nexus engine with the

corresponding validation (M42). This final version will include additional secondary

functionalities that are not necessary for the success of the upcoming Workshops (WSs). with

the CS, to be organised in collaboration with WP1 and WP5.

https://slnae-dev.nexogenesis.eu/
https://nepat-dev.nexogenesis.eu/
https://nepat-dev.nexogenesis.eu/

D4.4 Core module of the self-learning nexus engine

9 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Figure 1. SLNAE UI. Beta version warning.

1.2. Links to the ICT4WATER Cluster

WP4 is considered the ‘digital’ WP in the Nexogenesis project. Thus, it is the natural link

between the project and the ICT4WATER Cluster1.

The outcomes of the task T4.4 are specially linked to the ICT4WATER Updated Digital Water

Action Plan2 and its ‘Intelligent and smart systems’, ‘Actor engagement and co-creation’ and

‘Policies’ Action Groups3.

With regards to the actions and activities outlined in the Digital Water Action Plan, this

deliverable and the SLNAE/NEPAT tool (developed under WP4 in NXG) contributes to the

following (all action numbers refer to the Digital Water Action Plan):

- The ‘Intelligent and smart systems’ action 2 activities 1 & 2: A multi-optimization

decision-making framework (the Self-Learning Nexus Engine), based on Deep

Reinforcement Learning, is implemented for decision support.

- The ‘Intelligent and smart systems’ action 5 activities 1 & 2: Uncertainty is taken into

account in the integrated complexity science models.

1 https://ict4water.eu/
2 https://ict4water.eu/wp-content/uploads/2023/06/Update-Digital-Water-Action-Plan-V7.pdf
3 https://ict4water.eu/action-groups/

https://ict4water.eu/
https://ict4water.eu/wp-content/uploads/2023/06/Update-Digital-Water-Action-Plan-V7.pdf

D4.4 Core module of the self-learning nexus engine

10 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

- The ‘Actor engagement and co-creation’ action 1 activity 1: A public online tool (the

SLNAE) is developed.

- The ‘Actor engagement and co-creation’ action 2 activities 1 & 2: Stakeholders from

all nexus sectors are taken into account during the Nexogenesis co-creation process for

the SLNAE design.

- The ‘Policies’ action 5 activity 1: The SLNAE tool enables policy co-creation.

- The ‘Policies’ action 6 activity 2: The SLNAE tool enables improved management of

governance complexity including uncertainty and other factors.

1.3. NEPAT: a new name for the SLNAE

During the initial period of the project, it was necessary to explain the definition and meaning

of the SLNAE to non-technical audiences (e.g. stakeholders) on multiple occasions. The term

"Self-Learning" is a technical concept related to AI and ML algorithms involved in its

development, which can be difficult to understand and may generate confusion. Additionally,

the acronym SLNAE and the full name are not easy to pronounce. Therefore, it was decided

with the NXG consortium that a new name was needed.

WP4 led the initiative to define a new name that would be self-explanatory and avoid technical

jargon, while incorporating Nexogenesis-related concepts such as "policy assessment" or

"impact". Several options were proposed under the cocreation framework and put to a vote, and

eventually, the name "Nexogenesis - Nexus Policy Assessment Tool (NEPAT)" was selected

as the best option. The new name is simpler, easier to pronounce, and more reflective of the

tool's and project’s purpose. In order to be consistent with the GA and other official

documentation, both names are valid to refer to the SLNAE.

Thus, the SLNAE tool is referred to as either SLNAE or NEPAT indiscriminately.

1.4. Document structure

The document is structured as follows: Section 2 describes the requirements for the Self-

Learning Nexus Engine implementation. Section 3 briefly reviews the state of the art in multi-

objective optimization and multi-objective reinforcement learning within the nexus domain,

highlighting the advantages of using reinforcement learning in the NXG DSS. Section 4

establishes the foundational knowledge and mathematical formulation in the multi-objective

optimization domain and introduces the selected MORL algorithms. Section 5 presents the

technical design of the NXG decision-making problem and its formalization. Section 6

showcases the initial results of these implementations. Finally, Section 7 demonstrates the

current integration of the Self-Learning Nexus Engine into the NEPAT UI, and Section 8

concludes with the findings and outlines the next steps.

D4.4 Core module of the self-learning nexus engine

11 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

2. Requirements for the

development of the self-learning

nexus engine

In order to develop the NEPAT’s self-learning nexus engine and DSS (step 3 in Figure 2 -

Right), the key following components (Figure 2 - Left) have been previously developed (steps

1 and 2), by other technical WPs, through the co-creation framework (Figure 2 - Right) for

Nexus Policy packages identification:

- Policies

- Nexus Indicators

- Nexus Policy Goals, years and targets

- System Dynamics Models (SDM)s

All these components have been provided by each of the five NXG CSs and have been

integrated into the NXG Simulation Policy Framework (see deliverable D4.3 Simulation Policy

Framework). The aim of the DSS is to identify which policy combinations (i.e., policy

packages) are suitable for achieving the goals' targets. This objective is further explained and

technically formalized later in this document. To measure the impact of each policy package,

an SDM is required. Policies have been implemented in the SDMs, so their impact and trade-

offs can be quantitatively measured using the Nexus indicators, which are also implemented in

the SDMs. A Nexus Goal is linked to one of these indicators, making it measurable.

All these components are available in the Nexogenesis Internal Data Repository or Data Lake

(see D4.2 Data Lake for data sharing). WP4 collects all these resources and uses them to

develop the NEPAT.

WP1 & SHs

WP2 WP4

Nexus policies

Nexus indicators

WP3
Reference pathway
simulations

WP5 & CSs

CSs metadata

CSs translations

SDMs and
validation data

Nexus Policy Goals and Policy Targets

WP5 & CSs

Figure 2. Left: NXG cross-WP data pipelines in the Internal Data Repository. Right: NXG co-creation framework for Nexus Policy packages

identification. Source: D4.1

Definition of Nexus Policies and
Targets

(WP1, WP5, CSs & SHs)

Integration of Nexus Policies
and Indicators into

Complexity Science tools

(WP2 & WP3)

Identification of optimal
Nexus Policy packages

(WP4)

Evaluation of proposed
policy packages

(WP1, WP5, CSs & SHs)

1

2

3

4

D4.4 Core module of the self-learning nexus engine

12 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

2.1. Policies

Each CS has proposed an arbitrary number of policies, based on their interest and goals, and

the final analysis they want to carry out. Table 1 summarizes the most relevant information,

from a decision-making multi-objective point of view, associated with the available policies, as

how many of them have been proposed, how many have been finally implemented or its type,

among other information.

Table 1. NEPAT available policies

CS N. of

regions

N. of proposed

policies

N. of proposed policies

at region level

N. of implemented

policies

Incompatible

policies

Type of policies

(Fixed/Dynamic)

Nestos 2+1 10 5 12 No F

Lielupe 2+1 6 5 24 Yes F

Jiu 1 7 - 18 Yes F

Adige 1 12 - 12 No F

Inkomati 1 11 - 11 No F/D

Given that some CS are transboundary, there are further considerations regarding policies,

because the countries involved in each CS may have/select different policies, applying only to

their subregion. Hence, there are two CSs (Nestos and Lielupe) that have split their

implementation and offer sub-regions, or sub-basins, in their SDMs. In Lielupe, the regions of

Latvia and Lithuania have been separately considered as the system sub-regions. In Nestos,

although there are 14 sub-basins identified in the SDMs, policies can only be applied to the

sub-regions of Bulgaria or Greece. In these cases, we consider there to be three regions: two

sub-regions plus the case study as a whole. Therefore, some policies can be applied at a regional

level, allowing decision-making and trade-off analysis at a spatial scale as well.

In some cases, CSs have proposed policies that can be modulated (Figure 3). For example,

Policy P5 in the Lielupe CS, targets the reduction of Greenhouse Gas (GHG) emissions. This

policy affects the fraction of grasslands to renewables parameter in the SDMs, and it is

implemented as a range between 0 and 1, or as a percentage. Initially, we discretize this range

into three values: 0.33, 0.66, and 1, resulting in three additional policies. Thus, technically

speaking, there may be more implemented policies than those originally proposed. Later, this

discretization can be modified based on SHs’ feedback. Continuing with this example, these

additional policies cannot be applied simultaneously because they modulate the same parameter

and correspond to the same real policy. We represent this restriction by marking them as

incompatible policies.

D4.4 Core module of the self-learning nexus engine

13 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Figure 3. NEPAT UI. Example of Policy modulation

In other cases, like the Nestos CS, there were some policies which were described as appliable

to the whole basin, while being implemented in the SDM as two variables (one for each region).

In these cases, we split the policy into one for each region.

Finally, there are several ways to classify policies, such as by the direct nexus sector affected,

the indirect sectors, or the way the policies function. Here, we classify the proposed policies

based on whether they can be applied at any custom time between 2015 and 2050 or not. In the

former case, we mark them as ‘Dynamic policies’, enabling decision-making and trade-off

analysis at a temporal scale, and in the latter case as ‘Fixed policies’.

Additional information about policies, policy integration, and the policy simulation framework

can be found in D4.3 Simulation Policy Framework.

2.2. Policy packages

The number of possible policy combinations (i.e. policy packages), considering both the

number of implemented policies and their compatibility, can be computed approximately. Table

2 provides an overview of these possible policy packages, illustrating the variety of

combinations available based on the given policies. These computations include both valid and

invalid policy packages, since the presented algorithms in section 4.3 don’t have action masking

implemented, meaning all combinations, whether valid or invalid, can be explored by the agents

during the training phase. Hence, these would be the numbers that accurately describe the

magnitude of the problem for each case study.

D4.4 Core module of the self-learning nexus engine

14 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Table 2. CS possible combinations with fixed policies

CS Policy combinations

Nestos 28,672

Lielupe 218,103,808

Jiu 2,621,440

Adige 28,672

Inkomati 13,312

From all the presented CSs, Inkomati provided SDMs with dynamic policies (Table 1), meaning

that they can be configured to start their application in any set time in the simulation. For this

case, we have computed the combinations for three scenarios, ordered by the granularity of the

policy application time:

• Policy application every 5 years: meaning each policy can be applied in 2015, 2020,

and so on up to 2050, providing 7 possible years to choose from.

• Policy application yearly: each policy can be applied in any of the 35 years of the

simulation.

• Policy application monthly: each policy can be applied in any of the 420 months of the

simulation.

Table 3. Inkomati combinations with dynamic policies

Scenario Policy combinations

Policy application every 5 years 5.97E+24

Policy application yearly 1.52E+118

Policy application monthly 1.32E+1394

Table 3 shows the number of combinations for each of the considered scenarios. Given the size

and complexity of these combination counts, tabular methods are impractical due to their

inability to scale to these magnitudes. Therefore, we will employ Deep Reinforcement Learning

(Deep RL) algorithms, which are better suited for handling large-scale problems. Although the

second and third scenarios are highly detailed and case-specific, possibly with no real nexus

application, they exemplify a significant level of complexity. Therefore, they can effectively

highlight and demonstrate the advantages of the methodology introduced in the NXG project,

particularly in this deliverable.

2.3. Goals

Each CS has proposed an arbitrary number of goals as well, based on its interest and objectives,

and the final analysis they want to carry out. Table 4 summarizes the most relevant information,

from a decision-making multi-objective point of view, associated with the available goals, as

how many of them have been proposed or how many have been finally implemented, among

other information.

D4.4 Core module of the self-learning nexus engine

15 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Table 4. NEPAT available goals

CS N. of proposed

goals

N. of proposed goals

at region level

N. implemented

goals

N. of goals affected by

stochastic variables

Nestos 5 5 30 -

Lielupe 4 2 5 1

Jiu 7 - 9 0

Adige 3 - 3 1

Inkomati 14 - 14 9

Similarly to the policies: i) goals can also be set at the sub-region level, and ii) there may be

more implemented goals than originally proposed. For example, Goal G1 in the Jiu CS aims

for an 87% reduction in GHG emissions by 2030 and a 97% reduction by 2050. Two additional

goals have been implemented, each corresponding to one of these pairs of years and targets.

Finally, it is important to understand whether the proposed goals are influenced by the

underlying data stochasticity implemented in the SDMs for proper consideration.

Additional information about goals, goals integration, and the policy simulation framework can

be found in D4.3 Simulation Policy Framework.

2.3.1. Goal targets and years

Goals are defined as a three-tuple structure. First, the SDM indicator linked to the goal, which

must be used to measure its performance and achievement. Second, the target value (e.g. an

absolute amount, a percentage) is used as a threshold to evaluate the achievement of the

corresponding goal. And third, a specific year between 2015 and 2050 when the goal

achievement must be evaluated.

Figure 4, NEPAT UI goal attributes view

For example, in the Inkomati CS, Goal 4 is defined by the indicator "Domestic water

withdrawal," with a target value of 15% to be achieved by a specified year. Figure 4 illustrates

how this goal is represented in the NEPAT UI.

D4.4 Core module of the self-learning nexus engine

16 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

3. A nexus multi-objective

approach

Multi-objective optimization (MOO), also known as multi-criteria or multi-attribute

optimization, deals with problems involving more than one objective function to be optimized

simultaneously. These problems are ubiquitous in engineering, economics, logistics, and other

fields where trade-offs between conflicting objectives need to be made, such as the nexus.

This is a reduced version because these results have been/will be submitted for publication in a

peer reviewed journal. For more information please contact the authors - Lluís Echeverria

Rovira (Eurecat) lluis.echeverria@eurecat.org.

mailto:lluis.echeverria@eurecat.org

D4.4 Core module of the self-learning nexus engine

17 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

4. Multi-objective RL: problem

setting, taxonomy and

algorithms

This section first introduces the multi-objective problem setting, extending the single-objective

Markov Decision Process (MDP) formalization. Second it presents the taxonomy utilized

throughout the rest of the document, and final, it describes the MORL and DMORL algorithms

implemented to solve the proposed nexus decision-making problem.

A deep introduction to MDPs and RL can be found in [19]. The following sub-sections are

based on [25] and [20].

4.1. Multi-objective problem setting

Extending the MDP formalization presented in D4.1 section 6.2.5.1 MDP formalization, we

introduce the Multi-Objective Markov Decision Process (MOMDP) as the proposed

mechanism to support decision-making in the nexus.

A MOMDP is represented by the tuple 〈𝑆, 𝐴, 𝑇, 𝛾, 𝜇, 𝑅〉, where:

• 𝑆 is the state space

• 𝐴 is the action space

• 𝑇 ∶ 𝑆 × 𝐴 × 𝑆 → [0,1] is a probabilistic transition function

• 𝛾 ∈ [0, 1) is a discount factor

• 𝜇 ∶ 𝑆 → [0,1] is a probability distribution over initial states

• 𝑅 ∶ 𝑆 × 𝐴 × 𝑆 → ℝ𝑑 is a vector-valued reward function, specifying the immediate

reward for each of the considered 𝑑 ≥ 2 objectives

The key distinction between a single-objective MDP and MOMDP lies in the vector-valued

reward function. In a MOMDP, this function provides a numerical feedback signal for each

= (𝑅1, 𝑅2, … , 𝑅𝑑)𝑡

Figure 5. Multi-Objective Reinforcement Learning agent-environment interaction flow

D4.4 Core module of the self-learning nexus engine

18 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

objective under consideration, resulting in a reward vector whose length matches the number

of objectives (Figure 5).

This is a reduced version because these results have been/will be submitted for publication in a

peer reviewed journal. For more information please contact the authors - Lluís Echeverria

Rovira (Eurecat) lluis.echeverria@eurecat.org.

4.2. Multi-objective taxonomy

This section introduces various concepts from the multi-objective optimization domain that will

be utilized later in the document. Building on the previously presented term, the utility function,

two extensions are defined. These extensions form the basis for the different types of solution

sets that can be derived.

4.2.1. A Monotonically increasing utility function

A monotonically increasing utility function, 𝑢, follows the rule that if a policy enhances one or

more of its objectives without diminishing any others, the scalarized value will also increase.

(∀𝑖 ∶ 𝑉𝑖
𝜋 ≥ 𝑉𝑖

𝜋′) ∧ (∃𝑖 ∶ 𝑉𝑖
𝜋 > 𝑉𝑖

𝜋′) ⇒ 𝑢(𝑉𝜋) ≥ 𝑢(𝑉𝜋′)

A monotonically increasing utility function can represent both linear (with nonzero positive

weights) and non-linear user preferences. Monotonicity in the utility function is a minimal

assumption for MORL, as it aligns with the fundamental definition of an objective: we always

seek to maximize value in any of the objectives.

4.2.2. A linear utility function

A linear utility function calculates the inner product of a weight vector 𝑤 and a value vector

𝑉𝜋.

𝑢(𝑉𝜋) = 𝑤𝑇𝑉𝜋

Each element of the weight vector 𝑤 specifies how much one unit of value for the corresponding

objective contributes to the scalarized value. The elements of the weight vector are all positive

real numbers and are constrained to sum to 1.

mailto:lluis.echeverria@eurecat.org

D4.4 Core module of the self-learning nexus engine

19 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

4.2.3. Solution sets

In single-objective RL problems, there exists a unique optimal value 𝑉∗, and there can be

multiple optimal policies 𝜋∗ that all achieve this value. The goal in single-objective RL is

typically to learn an optimal policy. However, in MOO cases, without any additional

information about the user’s utility, there can be multiple potentially optimal value vectors 𝑉.

Therefore, it is necessary to consider different sets of potentially optimal value vectors and

policies.

The selection of the solution set is crucial for the efficiency of algorithms used in solving MO

problems, as it requires computing all the policies within these sets.

4.2.3.1. The undominated set

The undominated set 𝑈(Π) consists of the subset of all possible policies Π and their associated

value vectors for which there exists a potential utility function 𝑢 that achieves the maximum

scalarized value.

𝑈(Π) = {𝜋 ∈ Π | ∃𝑢, ∀𝜋′ ∈ Π ∶ 𝑢(𝑉𝜋) ≥ 𝑢(𝑉𝜋′)}

However, the undominated set might include redundant policies. These are policies that are

optimal for a particular utility function, but there are other policies that are also optimal for the

same utility function. In such cases, it is unnecessary to keep all these policies to maintain

optimal utility.

4.2.3.2. The coverage set

A set 𝐶𝑆(Π) is considered a coverage set if it meets two conditions: it must be a subset of 𝑈(Π),

and, for every 𝑢 in, it includes a policy with the highest scalarized value.

𝐶𝑆(Π) ⊆ 𝑈(Π) ∧ (∀𝑢, ∃𝜋 ∈ 𝐶𝑆(Π), ∀𝜋′ ∈ Π ∶ 𝑢(𝑉𝜋) ≥ 𝑢(𝑉𝜋′))

4.2.3.3. The Pareto Front

In those cases where the utility function 𝑢 is any monotonically increasing function, then the

Pareto Front (PF) is the undominated set 𝑈(Π).

𝑃𝐹(Π) = {𝜋 ∈ Π | ∄𝜋′ ∈ Π ∶ 𝑉𝜋′ ≻𝑝 𝑉𝜋}

where ≻𝑝 is the Pareto dominance relation

𝑉𝜋 ≻𝑝 𝑉𝜋′
⇔ (∀𝑖 ∶ 𝑉𝑖

𝜋 ≥ 𝑉𝑖
𝜋′

) ∧ (∃𝑖 ∶ 𝑉𝑖
𝜋 > 𝑉𝑖

𝜋′
)

D4.4 Core module of the self-learning nexus engine

20 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

In other words, the Pareto front is constituted by all the policies such that there is no other

policy with value that is equal of better in all the objectives. A collection of policies whose

value functions align with the PF is known as a Pareto Coverage Set (PCS).

4.2.3.4. The convex hull

The convex hull (CH) consists of the subset of Π for which there exists a weight vector 𝑤 (for

a linear utility function) such that the linearly scalarized value is maximized. It is the

undominated set for linear utility functions.

𝐶𝐻(Π) = {π ∈ Π | ∃𝑤, ∀π′ ∈ Π: 𝑤𝑇𝑉π ≥ 𝑤𝑇𝑉π′
}

4.2.3.5. The convex coverage set

A set CCS(Π) is a convex coverage set if it is a subset of CH(Π) and if, for every weight vector,

it includes a policy whose linearly scalarized value is maximized.

𝐶𝐶𝑆(Π) ⊆ CH(Π) ∧ (∀w, ∃π ∈ CCS(Π), ∀π′ ∈ Π: w⊤Vπ ≥ w⊤𝑉π′
)

4.3. Multi-objective Reinforcement

learning algorithms

Multi-objective reinforcement learning encompasses a diverse array of methodologies, from

bandit problems to deep reinforcement learning architectures. For a thorough review see [12].

A prevalent and widely adopted approach in MORL is extending established single-objective

model-free value-based methods like Q-learning [26] to handle multiple objectives

simultaneously.

Some examples of this practice include MO Q-Learning, MPMO Q-Learning [27], Pareto Q-

Learning [25] and MPQ-learning [28]. These methods are restricted to tabular representations

of Q-values, limiting their applicability to more complex problems. For these types of problems,

some DRL algorithms have been adapted to multiple objectives. Most of these methods extend

the single objective DQN architecture and some examples are Pareto DQN [29] and Envelope

Q-learning [30].

There are also some alternatives to the seen value-based approaches, adopting policy search

algorithms. Some examples are the Expected Utility Policy Gradient (EUPG) implementation

by Roijers et al. [31], the multi-objective categorical Actor-Critic (MOCAC) by Reymond et

al. [32] or the multi-objective extension of PPO by Xu et al [33].

D4.4 Core module of the self-learning nexus engine

21 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

For the Self-Learning Nexus Engine, we have considered the tabular method Pareto Q-learning

and the DRL algorithm Envelope Q-learning implementations from MORL-Baselines [34]

Python library. Considering the number of goals we have (Table 4), we have focused on the

algorithms that do not impose explicit limitations on the number of objectives. Finally, we have

adapted the available implementations to match the NXG case and its characteristics.

The usage of Pareto Q-learning will allow us to explicitly capture Pareto-optimal solutions,

allowing a thorough modelling of the trade-offs between different objectives. Also, since its

tabular nature, it will allow us to have a more variate range of recommendations. On the other

hand, Envelope Q-learning focuses on efficiently representing the envelope of the Pareto front,

simplifying the computational complexity associated with maintaining multiple solutions. This

method scales effectively to larger state-action spaces, being the best option for solving the

bigger problems presented in section 2.2.

This is a reduced version because these results have been/will be submitted for publication in a

peer reviewed journal. For more information please contact the authors - Lluís Echeverria

Rovira (Eurecat) lluis.echeverria@eurecat.org.

mailto:lluis.echeverria@eurecat.org

D4.4 Core module of the self-learning nexus engine

22 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

5. The Nexogenesis decision-

making problem formalization

[12] and [20] propose six scenarios where a multi-objective approach is required. The NXG

decision-making case falls into the decision support scenario, where the user’s preferences are

unknown or difficult to specify.

Figure 6. Decision support scenario diagram, extracted from [X]

As seen in Figure 6, in this scenario, since a priori we don’t know the user’s preferences, we

compute a solution set with the Pareto front solutions to be able to respond with an optimal

solution regardless of the preferences. Once the user wants a recommendation, he provides its

preferences and with those set, the selection phase is run, obtaining the best solution according

to the set preferences.

The MOMDP in the NXG decision-making problem is presented as an episodic case where,

given an initial situation, the agent must provide the undominated set solutions. Two problem

variants are proposed, one considering deterministic environments (i.e. deterministic SDMs),

and the other considering stochastic environments. In the first case, the average reference

scenario is used. In the second case, available data stochasticity in SDMs is not aggregated,

thus a more challenging situation is presented. Further details on how these environments are

constructed can be found in D4.3.

Each project CS represents a unique optimization problem. Additionally, there are three further

layers of complexity. First, each CS includes a set of reference scenarios (RCP-SSP

combinations), each depicting different potential future conditions. Second, the complexity

models implemented by WP3 incorporate randomness in the input data, allowing for both

deterministic and stochastic execution modes. Finally, one of the CSs (Inkomati) introduces an

additional decision-making dimension: the year when a policy is applied, which we call the

‘dynamic policies’ mode, in contrast to the ‘static mode’ with fixed policies. All these options

are available through different implementations of the CS’ System Dynamic Models (SDMs).

Consequently, an agent will be trained for every combination of CS, reference scenario,

randomness execution mode, and, for the Inkomati CS, the policy mode.

This is a reduced version because these results have been/will be submitted for publication in a

peer reviewed journal. For more information please contact the authors - Lluís Echeverria

Rovira (Eurecat) lluis.echeverria@eurecat.org.

mailto:lluis.echeverria@eurecat.org

D4.4 Core module of the self-learning nexus engine

23 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

6. Initial results

Given the problems presented in section 2.2, we applied the proposed mechanisms to the

Lielupe, Jiu and Inkomati CSs with fixed policies using the RCP26-SSP2 scenario and

deterministic SDMs. Additionally, we also ran some initial processes for the Inkomati CS with

dynamic policies every 5 years. We will continue adjusting the framework, training agents and

validating their performance over the coming months.

This is a reduced version because these results have been/will be submitted for publication in a

peer reviewed journal. For more information please contact the authors - Lluís Echeverria

Rovira (Eurecat) lluis.echeverria@eurecat.org.

mailto:lluis.echeverria@eurecat.org

D4.4 Core module of the self-learning nexus engine

24 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

7. The NEPAT DSS

The trained agents discussed in the previous section have been integrated into NEPAT to

validate the recommendation pipeline. A specific view in the NEPAT UI, the Decision Support

System view (Figure 7), has been deployed, allowing users to interact with the recommendation

service.

Figure 7. NEPAT UI. Decision Support System view

The view is divided into two sections. On the left side (Figure 8), the user can determine their

preferences to build a customized utility function. Various functionalities are provided in this

section. First, the user may choose to obtain recommendations based on a pre-defined policy

package. This option sets the initial state (starting policy package) from which the

corresponding agent will provide recommendations. Second, and most importantly, the user

can define the goals importance by setting different weights using slider mechanisms, one per

goal. Next, the user can specify the limit size of the recommended policy package. Finally, as

an additional filter, the recommended policies can be limited by sector or region (in those sub-

regional contexts) of application.

D4.4 Core module of the self-learning nexus engine

25 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Figure 8. NEPAT UI. Decision Support System view. Zoom on preferences section.

Once the custom utility function is configured, the user must press the “Get Policy Package

Recommendation” button. This action will trigger the DSS to obtain the recommendations,

which will be listed on the left side of the screen (Figure 9).

Figure 9. NEPAT UI. Decision Support System view providing policy package recommendations

The recommended policy packages are listed in a table (Figure 10), which can be expanded to

obtain further information about the impact of these policies if applied. First, the achievement

of goals is assessed, and second, the status of the nexus footprint indicators is provided. This

D4.4 Core module of the self-learning nexus engine

26 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

approach enables a comprehensive overview of the policy package impact across the entire

nexus.

Figure 10. NEPAT UI. Decision Support System view providing policy package recommendations. Zoom on

recommendations table.

If the user decides to accept any of the recommendations, the proposed policy package can be

directly imported into the Policy Package Builder section by clicking the apply button. This

allows the user to continue analyzing the impacts of that policy package through the NEPAT

functionalities.

D4.4 Core module of the self-learning nexus engine

27 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

8. Conclusions

The AI algorithmic foundations of the Self-Learning Nexus Engine have been formalized,

implemented, tested, and initially validated. Additionally, the Decision Support System service

has been successfully implemented and deployed, achieving one of the main objectives of task

T4.4 and WP4.

The self-learning nexus engine is the core mechanism that supports multi-objective decision-

making in the SLNAE/NEPAT tool. The self-learning term refers to the underlying Artificial

Intelligence (AI) and Machine Learning (ML) technology, enabling the creation of agents that

autonomously learn (i.e. self-learning) optimal policy combinations (i.e. policy packages) to

achieve the nexus-related objectives. We discuss and propose Multi Objective (Deep)

Reinforcement Learning (MODRL) as the foundational family of ML algorithms to implement

the NXG DSS.

Until M40 (end of task T4.4) this framework will be run for all CSs since each of the represents

a unique optimization problem. Additionally, there are three further layers of complexity. First,

each CS includes a set of reference scenarios (RCP-SSP combinations), each depicting different

potential future conditions. Second, the complexity models implemented by WP3 incorporate

randomness in the input data, allowing for both deterministic and stochastic execution modes.

Finally, one of the CSs (Inkomati) introduces an additional decision-making dimension: the

year when a policy is applied, which we call the ‘dynamic policies’ mode, in contrast to the

‘static mode’ with fixed policies. All these options are available through different

implementations of the CSs’ System Dynamic Models (SDMs). Consequently, an agent will be

trained for every combination of CS, reference scenario, randomness execution mode, and, for

the Inkomati CS, the policy mode, complementing those already presented.

The current version of the Self-Learning Nexus Engine is embedded in the public release of the

SLNAE/NEPAT at the following urls: https://slnae-dev.nexogenesis.eu or https://nepat-

dev.nexogenesis.eu.

Since the Self-Learning Nexus Engine inputs (i.e. the SDMs, the policies, the goals or the Nexus

footprint) are under constant validation, the current published version of the service is

designated as a Beta version and is subject to change. The DSS will be ready by August 2024

(M36) for the frontrunners CS (including the Inkomati CS), and for the followers CSs, it will

be ready by December 2024 (M40). Final policy package recommendations will be reported in

the corresponding WP5 deliverables (D.5.2 to D5.6) (M42).

The final version of the SLNAE is expected to be ready by February 2025 (M42) and will be

reported in D4.5 Final version of the self-assessment nexus engine with the corresponding

validation (M42).

https://slnae-dev.nexogenesis.eu/
https://nepat-dev.nexogenesis.eu/
https://nepat-dev.nexogenesis.eu/

D4.4 Core module of the self-learning nexus engine

28 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

9. References

[1] L. C. Thomas, “Constrained Markov decision processes as multi-objective problems.”

University of Manchester. Department of Decision Theory., 1982.

[2] L. Zadeh, “Optimality and non-scalar-valued performance criteria,” IEEE Trans.

Automat. Contr., vol. 8, no. 1, pp. 59–60, 1963.

[3] Y. Haimes, “On a bicriterion formulation of the problems of integrated system

identification and system optimization,” IEEE Trans. Syst. Man. Cybern., no. 3, pp. 296–

297, 1971.

[4] A. Charnes, W. W. Cooper, and R. O. Ferguson, “Optimal estimation of executive

compensation by linear programming,” Manage. Sci., vol. 1, no. 2, pp. 138–151, 1955.

[5] C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, “Handling multiple objectives with

particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 256–279,

2004.

[6] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE Comput. Intell.

Mag., vol. 1, no. 4, pp. 28–39, 2006.

[7] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by simulated annealing,”

Science (80-.)., vol. 220, no. 4598, pp. 671–680, 1983.

[8] C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjective optimization:

formulationdiscussion and generalization.,” in Icga, 1993, vol. 93, no. July, pp. 416–423.

[9] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective

genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197,

2002.

[10] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength Pareto

evolutionary algorithm,” TIK Rep., vol. 103, 2001.

[11] Q. Zhang and H. Li, “A multiobjective evolutionary algorithm based on decomposition,”

IEEE Trans. Evol. Comput., 2006.

[12] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley, “A survey of multi-objective

sequential decision-making,” J. Artif. Intell. Res., vol. 48, pp. 67–113, 2013.

[13] S. Dhaubanjar, C. Davidsen, and P. Bauer-Gottwein, “Multi-objective optimization for

analysis of changing trade-offs in the Nepalese water–energy–food nexus with

hydropower development,” Water, vol. 9, no. 3, p. 162, 2017.

[14] T.-S. Uen, F.-J. Chang, Y. Zhou, and W.-P. Tsai, “Exploring synergistic benefits of

Water-Food-Energy Nexus through multi-objective reservoir optimization schemes,”

Sci. Total Environ., vol. 633, pp. 341–351, 2018.

[15] M. Li, Q. Fu, V. P. Singh, D. Liu, and T. Li, “Stochastic multi-objective modeling for

optimization of water-food-energy nexus of irrigated agriculture,” Adv. Water Resour.,

vol. 127, pp. 209–224, 2019.

[16] F. Karamian, A. A. Mirakzadeh, and A. Azari, “Application of multi-objective genetic

algorithm for optimal combination of resources to achieve sustainable agriculture based

on the water-energy-food nexus framework,” Sci. Total Environ., vol. 860, p. 160419,

2023.

[17] I. Okola, E. O. Omulo, D. O. Ochieng, and G. Ouma, “A comparison of evolutionary

algorithms on a Large Scale Many-Objective Problem in Food–Energy–Water Nexus,”

Results Control Optim., vol. 10, p. 100195, 2023.

[18] F. Mansour, M. Al-Hindi, M. Abou Najm, and A. Yassine, “Multi-objective optimization

for comprehensive water, energy, food nexus modeling,” Sustain. Prod. Consum., vol.

38, pp. 295–311, 2023.

[19] R. S. Sutton and A. G. Barto, “Reinforcement learning: an introduction 2018 complete

D4.4 Core module of the self-learning nexus engine

29 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

draft,” 2017. doi: 10.1109/TNN.1998.712192.

[20] C. F. Hayes et al., “A practical guide to multi-objective reinforcement learning and

planning,” Auton. Agent. Multi. Agent. Syst., vol. 36, no. 1, p. 26, 2022.

[21] K. Van Moffaert, M. M. Drugan, and A. Nowé, “Hypervolume-based multi-objective

reinforcement learning,” in Evolutionary Multi-Criterion Optimization: 7th

International Conference, EMO 2013, Sheffield, UK, March 19-22, 2013. Proceedings

7, 2013, pp. 352–366.

[22] O. Emamjomehzadeh, R. Kerachian, M. J. Emami-Skardi, and M. Momeni, “Combining

urban metabolism and reinforcement learning concepts for sustainable water resources

management: A nexus approach,” J. Environ. Manage., vol. 329, p. 117046, 2023.

[23] W. Zhang, A. Valencia, and N.-B. Chang, “Fingerprint Networked Reinforcement

Learning via Multiagent Modeling for Improving Decision Making in an Urban Food–

Energy–Water Nexus,” IEEE Trans. Syst. Man, Cybern. Syst., 2023.

[24] R. Wu, R. Wang, J. Hao, Q. Wu, and P. Wang, “Multiobjective multihydropower

reservoir operation optimization with transformer-based deep reinforcement learning,”

J. Hydrol., p. 130904, 2024.

[25] K. Van Moffaert and A. Nowé, “Multi-objective reinforcement learning using sets of

pareto dominating policies,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 3483–3512, 2014.

[26] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, no. 3–4, pp. 279–

292, May 1992, doi: 10.1007/bf00992698.

[27] K. Van Moffaert, M. M. Drugan, and A. Nowé, “Scalarized multi-objective

reinforcement learning: Novel design techniques,” in 2013 IEEE symposium on adaptive

dynamic programming and reinforcement learning (ADPRL), 2013, pp. 191–199.

[28] M. Ruiz-Montiel, L. Mandow, and J.-L. Pérez-de-la-Cruz, “A temporal difference

method for multi-objective reinforcement learning,” Neurocomputing, vol. 263, pp. 15–

25, 2017.

[29] M. Reymond and A. Nowé, “Pareto-DQN: Approximating the Pareto front in complex

multi-objective decision problems,” 2019.

[30] R. Yang, X. Sun, and K. Narasimhan, “A generalized algorithm for multi-objective

reinforcement learning and policy adaptation,” Adv. Neural Inf. Process. Syst., vol. 32,

2019.

[31] D. M. Roijers, D. Steckelmacher, and A. Nowé, “Multi-objective reinforcement learning

for the expected utility of the return,” in Proceedings of the Adaptive and Learning

Agents workshop at FAIM, 2018, vol. 2018.

[32] M. Reymond, C. F. Hayes, D. Steckelmacher, D. M. Roijers, and A. Nowé, “Actor-critic

multi-objective reinforcement learning for non-linear utility functions,” Auton. Agent.

Multi. Agent. Syst., vol. 37, no. 2, p. 23, 2023.

[33] J. Xu, Y. Tian, P. Ma, D. Rus, S. Sueda, and W. Matusik, “Prediction-guided multi-

objective reinforcement learning for continuous robot control,” in International

conference on machine learning, 2020, pp. 10607–10616.

[34] F. Felten et al., “A toolkit for reliable benchmarking and research in multi-objective

reinforcement learning,” Adv. Neural Inf. Process. Syst., vol. 36, 2024.

[35] H. Hasselt, “Double Q-learning,” Adv. Neural Inf. Process. Syst., vol. 23, 2010.

[36] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-

learning,” in Proceedings of the AAAI conference on artificial intelligence, 2016, vol.

30, no. 1.

