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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• A multicriteria method is proposed to 
map groundwater dependent 
ecosystems.

• Four objective weighting methods are 
evaluated.

• Validation is based on known springs 
locations.

• The CRITIC method provides the most 
reliable weight assignments.

• Spatio-temporal changes driven by cli-
matic variability are assessed.
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A B S T R A C T

Groundwater dependent ecosystems (GDEs) mapping is critical to optimize their management and to preserve 
the related services. The effective use of cutting-edge technologies such as Geographic Information Systems (GIS) 
and remote sensing technologies is extensively proposed to facilitate GDEs mapping. This study introduces a 
comprehensive GDEs mapping methodology that integrates GIS and remote sensing with a multi-criteria analysis 
(MCA) approach. The proposed methodology aims to enhance the practicality of the existing MCA-based GDEs 
mapping approaches by (a) identifying a set of criteria that account for the interdependence and complemen-
tarity of inputs, and (b) specifying criteria weights via objective weighting methods to eliminate the subjective 
influence of experts’ opinion. A coherent set of criteria is proposed as input to the developed MCA model, 
following a correlation assessment across a large set of parameters related to GDEs occurrence. The criteria 
weights are specified based on four of the most common objective weighting techniques—Mean Weight, Stan-
dard Deviation, entropy, and Criteria Importance Through Intercriteria Correlation. The proposed methodology 
is implemented in Chania Plain, Greece, an agricultural area characterized by a significant number of springs and 
a complex network of streams. The results have been validated at 13 springs; the majority of springs locations 
have been characterized as high to very high GDEs potential zones, with CRITIC to be proved as the most suitable 
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weighting method. The validation results highlight the suitability of the proposed set of input criteria to reliably 
map GDEs in a practical, time-efficient, and cost-effective manner.

1. Introduction

Groundwater serves as a vital resource covering a wide spectrum of 
human water needs, while playing a crucial role in sustaining ecosys-
tems, such as karsts, springs, wetlands, woodlands, riparian forests, and 
baseflow rivers, collectively known as Groundwater-Dependent Eco-
systems (GDEs) (Eamus et al., 2016). These ecosystems depend partially 
or entirely on groundwater to cover their water requirements. Eamus 
et al. (2006) classifies GDEs as: a) aquatic ecosystems, such as springs, 
wetlands, rivers, and others; b) terrestrial (vegetation-based) ecosys-
tems; and c) subterranean ecosystems, including cave and aquifer en-
vironments. Preserving GDEs is of high importance, as they offer a wide 
range of benefits to humans (ecosystem services) such as climate regu-
lation, recreation, and provision of material goods (Howard et al., 
2023). Mapping GDEs is a critical step towards sustainable GDEs man-
agement and protection. However, in most cases, GDEs location infor-
mation is unavailable (Howard and Merrifield, 2010; Gou et al., 2015) 
and although field campaigns and in-situ measurements, such as isotope 
analyses, may provide reliable GDEs identification, they are still quite 
expensive and impractical methods (Fildes et al., 2023). To bridge this 
gap, Geographic Information Systems (GIS) and remote sensing tech-
nologies are utilized to facilitate GDEs mapping. The integration of these 
technologies with multi-criteria analysis (MCA) has already gained 
ground in the field of groundwater management as it constitutes a 
well-documented technique for groundwater potential zones identifi-
cation (Arulbalaji et al., 2019; Doke et al., 2021; Jhariya et al., 2021; 
Ejaz et al., 2024; Hairchi et al., 2024; Hulluka et al., 2024; Zewdie et al., 

2024) , and it is now expanding in GDEs mapping. Literature proposes 
several GIS-based GDEs mapping methodologies using MCA approaches, 
which synthesize spatial data relevant to GDEs presence to create GDEs 
potential maps, presented on a likelihood scale (e.g. Duran-Llacer et al., 
2022; Fildes et al., 2023). These maps do not pinpoint precise GDEs 
locations but instead highlight indicative zones where GDEs are ex-
pected to be met.

Table 1 summarizes various GIS-based MCA methodologies reported 
in literature for mapping GDEs, detailing the criteria used to identify 
them. Input variables for potential GDEs zone (pGDEz) models include 
indices related to climatic conditions (e.g. rainfall - R), topographic 
parameters (e.g. elevation - E), multispectral indices (e.g. Enhanced 
Vegetation Index – EVI), as well as geological, hydrogeological and 
pedological data. Commonly, experts’ judgment is adopted to assign 
weights to these input variables, whereas validation methods demon-
strating models’ competency vary widely. Indicatively, validation 
methods such as a) field visits to identify vegetation in good health in 
areas characterized as very high or high probability zones of GDEs, b) 
already known spring locations and c) groundwater level maps are 
identified in the literature. It should be noted that direct validation 
methods of GDEs presence such as predawn leaf water potential mea-
surements or isotope analysis are not included among the preferred 
ones, due to high cost and technological requirements. It is also noted 
that the identified GIS-based mapping methodologies are explicitly 
focused on terrestrial and aquatic GDEs mapping and therefore subter-
ranean GDEs are not included on the identified pGDEz.

Following a comprehensive literature review, the present study 

Table 1 
GIS-based MCA GDEs mapping methodologies.

Reference Duran-Llacer 
et al. (2022)

Pandey et al. (2023) Fildes et al. 
(2023)

Rampheri et al. 
(2023)

Criteria Elevation (E) ✓ ✓  
Lineament density (Ld) ✓ ✓ ✓ 
Topographic Wetness Index (TWI) ✓ ✓  ✓
Normalized Difference Wetness Index (NDWI) ✓ ✓  ✓ (modified 

NDWI)
Drainage density (Dd) ✓ ✓  
Geology/Lithology (G/Lth) ✓ ✓ (both G & Lth) ✓ 
Normalized Difference Vegetation Index (NDVI) ✓ ✓ ✓ ✓
Geomorphology (Gm) ✓ ✓  
Rain (R) ✓ ✓  
Land Use and Land Cover (LULC) ✓ ✓  ✓
Terrain Roughness Index (TRI) ✓   
Topographic Position Index (TPI) ✓   
Aridity Index (AI) ✓   
Enhanced Vegetation Index (EVI) ✓   
Flow accumulation (Fa) ✓   ✓
Proximity to rivers and water bodies (Prwb) ✓   
Curvature (Ct) ✓   ✓
Slope (Sl) ✓   ✓
Groundwater Level (GWL)  ✓  ✓
Normalized Difference Coefficient of Variation 
Index - Photosynthetic Vegetation Fractional 
Cover (NDCVIPVFC)

  ✓ 

Tasseled Cap Wetness (TCW)   ✓ 
Evapotranspiration (EΤa)   ✓ 

Validation 
processes/ 
methodologies

field visits for verification of vegetation’s good 
health

✓ ✓  

validation with groundwater level ✓ ✓ ✓ ✓
validation with land cover types ✓   ✓
validation with rainfall data    ✓
validation with known spring locations   ✓ 

Weighting method experts judgment ✓ (Delphi 
method)

✓ (based on previous studies done in a 
similar environment and based on 
experts judgment)

✓ (Analytic 
Hierarchy 
Process)

✓ (Analytic 
Hierarchy 
Process)
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introduces an innovative GIS-based multi-criteria analysis (MCA) 
approach for mapping GDEs. The proposed methodology seeks to 
enhance existing research by (a) systematically identifying a set of ob-
jectives and associated criteria/layers that account for the interdepen-
dence and complementarity of inputs, as well as methodology’s 
practicality, and (b) specifying criteria weights via objective weighting 
methods, thus eliminating biases introduced by subjective expert 
judgement. To this end, this analysis incorporates four of the most 
common objective weighting techniques—Mean Weight (MW), Stan-
dard Deviation (SD), entropy, and Criteria Importance Through Inter-
criteria Correlation (CRITIC)—as highlighted by Şahin (2021). The 
impact of these weighting methods on the delineation of pGDEz is 
thoroughly evaluated. The proposed GIS-based MCA mapping method-
ology has been validated in a test-bed case, the Chania Plain in Crete, 
Greece, a region which is characterized by its agricultural landscape, 
where a significant group of springs (i.e. aquatic GDEs), and a complex 
streams network (i.e. potential GDEs) occur, providing a robust testing 
ground. Finally, climatic conditions’ impact on the presence of GDEs is 
assessed by comparing GDEs areal extent between a wet and a dry year.

By addressing gaps of previous research works—i.e. the reliance on 
subjective expert opinions for weighting criteria and the integration of 
practical considerations in mapping objectives—this study contributes 
to the evolution of GDEs mapping methodologies, offering a more reli-
able and objective methodology for ecological assessment and conser-
vation planning. Particularly, a set of interdependent and 
complementary criteria is proposed as inputs to the MCA, as well as 
objective weighting methods are adopted to prevent potential bias 
resulting from experts’ subjectivity.

2. Validation area

Chania plain covers an area of 200 km2 and it is located in the 
western part of the Region of Crete. Following approximately the natural 
boundaries of "Porodes Kampou Chanion" groundwater system, encoded 
as EL1300022 (Hellenic Republic, Ministry of Environment & Energy, 
Special Secretariat for water, 2024), Chania plain is characterized by 
extended agricultural areas, covering almost 80 % of the total area ac-
cording to Copernicus Corine Land Cover 2018 (Fig. 1). The cultivations 
met in the area are mainly olive groves, avocados and citrus fruits. The 

climate of the area is Mediterranean, with mild and rainy winters and 
warm, dry summers; the winter period lasts from October to March, and 
the summer period from April to September (Steiakakis et al., 2023). In 
the lowlands of the area, the average minimum temperature observed in 
January to February, is about 9.2 ◦C, while the average highest tem-
perature (30.3 ◦C) occurs in July (Kourgialas et al., 2019). The annual 
rainfall for the broader Chania area has been estimated to be 665 mm of 
which over 95 % occurs between October and May (Chartzoulakis et al., 
2001; Goumas et al., 2017). About 65 % of the annual precipitation is 
lost to evapotranspiration, 21 % as runoff to sea and only 14 % recharges 
the groundwater (Chartzoulakis et al., 2001; Soupios et al., 2007). In 
Fig. 1, the numerous springs met in the area are depicted, with Agya 
spring considered as an ecosystem of great importance providing water 
supply and irrigation services (Kolitsi et al., 2024). The mean annual 
flow of the Agya spring is 69 hm3; however, during summer period, the 
spring is limited to no outflow due to intensified pumping (Nerantzaki 
and Nikolaidis, 2020). The network of streams in the plain is quite 
complex, with Keritis and Tavronitis being the dominant rivers. The 
major hydrological input into Tavronitis’ catchment is rainfall and 
consequently most of rivers’ monitoring stations dry up during summer; 
however, springs of low capacity are met in Tavronitis’ basin 
(Prountzos, 2013; Morianou, 2014). Keritis river is formed by Agya and 
Meskla springs flow and the intermittent surface runoff (Nerantzaki and 
Nikolaidis, 2020). Keritis River has a permanent flow only at its southern 
part, after the artificial lake of Agya springs as the Lake supplies the 
River; Keritis’ upper part has an intermittent flow (FILOTIS, 2024). 
Groundwater availability is characterized by satisfactory quality and 
quantity conditions (Hellenic Republic, Ministry of Environment & En-
ergy, Special Secretariat for water, 2024); however, due to the unequal 
temporal distribution of water resources and the increased demand 
during dry periods, water resources management is a critical factor for 
the area’s prosperity (Kritikakis et al., 2022). Indicatively, intense irri-
gation needs during the dry period (April–September) contribute to 
mean water table decline of around 3.5 m. Additionally, groundwater 
flow simulations for the area, under various climate change scenarios, 
have shown an additional decrease of the water table of approximately 
4 m, during the dry period of predicted extreme dry years (Charchousi 
et al., 2018).

Fig. 1. Land uses, major springs and rivers in Chania Plain.
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3. Methodology

3.1. Methodology’s overview

In this section, the proposed methodology for potential GDEs zones 
(pGDEz) mapping is presented. It includes an overview on the developed 
methodology which consists of the following steps: a) selection of 
criteria related to GDEs presence, b) criteria correlation analysis via the 
ArcGIS Multivariate tool, c) identification of the final set of criteria by 
eliminating criteria that are highly correlated with other input variables, 
d) min-max normalization of the selected criteria, e) objective weighting 
methods application, f) identification of pGDEz, and g) model validation 
(Fig. 2). Each methodological step is analyzed thereafter.

3.2. Selection of criteria

Duran-Llacer et al. (2022) have proposed a comprehensive set of 
input criteria -adopted in the present study-which is the most extensive 
one among the reviewed methodologies of Table 1. The 18 criteria 
identified as predictors of GDEs presence can be classified in four cate-
gories; conventional GIS layers (e.g. Geology-G); topographic parame-
ters (e.g. Topographic Wetness Index-TWI); multispectral indices (e.g. 
Normalized Difference Vegetation Index-NDVI); climate variables (e.g. 
Aridity Index-AI). To visualize and properly manage all input criteria, 
ESRI’s ArcGIS Desktop 10.8.2 software has been used; a software that 
offers advanced mapping and spatial analysis tools (ESRI, 2024). 

- Conventional GIS layers

The geological formations and groups (G) met in an area signify its 
groundwater potential and consequently GDEs potential (Duran-Llacer 
et al., 2022; Kabeto et al., 2022). The geological characteristics of 
Chania Plain (Fig. A.1) have been derived from the Geoportal of 
Decentralized Administration of Crete (2024). Geomorphology (Gm) 
constitutes also a crucial factor for pGDEz delineation (Duran-Llacer 
et al., 2022; Pandey et al., 2023). The Gm dataset has been obtained 
from the Geoportal of Greek Ministry of Environment and Energy (2024)
(Fig. A.2). A Land Use and Land Cover (LULC) map offers valuable in-
formation for pGDEz identification as LULC affects hydrological phe-
nomena such as infiltration and runoff, as well as groundwater quality, 
providing details on the locations of potential GDEs such as wetlands 
and vegetation (Pandey et al., 2023). In the present study, LULC data has 
been derived from CORINE Land Cover 2018 (Fig. A.3). 

- Topographic parameters

Elevation (E) is a parameter that can impact an area’s groundwater 
recharge potential; the higher the elevation, the smaller the ground-
water potential and vice versa (Kabeto et al., 2022). Therefore, E could 
be considered as a criterion for pGDEz identification. Chania Plain E 
data have been obtained from the Copernicus Data Space Ecosystem 

(2024) (Fig. A.4). E has been used as unique input in ArcGIS tools for 
estimating slope (Sl) and curvature (Ct) (Fig. A.5 and A.6, respectively), 
parameters that are related to GDEs presence as they affect flow accu-
mulation (Martínez-Santos et al., 2021; Duran-Llacer et al., 2022; 
Rampheri et al., 2023). Specifically, a gentle slope indicates great po-
tential infiltration and groundwater recharge and, therefore, significant 
GDEs potential (Rampheri et al., 2023). In the same pattern, negative 
values of curvature indicate concave zones, where greater groundwater 
recharge and GDEs potential is expected (Duran-Llacer et al., 2022). 
Proximity to rivers and water bodies (Prwb) could also be considered as 
a parameter of GDEs identification, as riparian zones are of high po-
tential for GDEs location (Duran-Llacer et al., 2022). In the framework of 
this analysis, Prwb (Fig. A.7) has been estimated via the Euclidean 
Distance tool in ArcGIS, using as input the rivers’ network. Flow accu-
mulation (Fa) is another criterion used in MCA GDEs mapping meth-
odologies (Duran-Llacer et al., 2022; Rampheri et al., 2023), related to 
surface flow as it is used for identifying the number of cells flowing into 
each cell of the produced map; therefore, the higher the Fa, the greater 
the likelihood of GDEs (Rampheri et al., 2023). Chania Plain Fa map has 
been produced using the related tool in ArcGIS (Fig. A.8), which requires 
as input the Flow Direction raster map, also produced via ArcGIS, based 
on E data. Drainage density (Dd) is highly related with groundwater flow 
(Luijendijk, 2022); therefore, it is expected that Dd is used as a criterion 
for GDEs mapping (Duran-Llacer et al., 2022; Pandey et al., 2023). A 
relative high drainage density indicates less infiltration and, conse-
quently, low GDEs potential (Arulbalaji et al., 2019). The Dd map of the 
study area (Fig. A.9) was produced via the Line Density tool of ArcGIS, 
using as input the Fa map. A significant lineament density (Ld) facilitates 
an area’s infiltration and groundwater recharge rates and therefore 
signifies high groundwater and GDEs potential (Duran-Llacer et al., 
2022; Kabeto et al., 2022; Pandey et al., 2023). In order to produce 
Chania Plain’s Ld map (Fig. A.10), the Line Density tool of ArcGIS has 
been applied, using as input the faults’ map provided at the Geoportal of 
Decentralized Administration of Crete (2024). Topographic wetness 
index (TWI) is widely embedded in GIS-based GDEs mapping method-
ologies (Duran-Llacer et al., 2022; Pandey et al., 2023; Rampheri et al., 
2023; Rohde et al., 2024) as it expresses the tendency of a cell to 
accumulate water and therefore indicates its tendency for higher infil-
tration rates; thus, a greater GDEs potential. TWI is estimated based on 
the following Eq. (1). 

TWI= ln
α

tan β
(1) 

where α is the contributing upslope area and β is the topographic 
gradient at the corresponding point.

In the present study, a TWI map has been produced via ArcGIS based 
on Fa and Sl maps (Fig. A.11), by adapting the steps proposed in Mattivi 
et al. (2019). The Topographic Position Index (TPI) is an algorithm (Eq. 
(2)) that calculates landform gradations on topographical slope posi-
tions and is widely included in groundwater potential zones and pGDEz 
multi-criteria mapping methodologies (Münch and Conrad, 2007; 

Fig. 2. The methodological steps.
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Arulbalaji et al., 2019; Duran-Llacer et al., 2022; Fatema et al., 2023). 
Specifically, areas with high values of TPI (such as ridgetops, cliffs, 
mountaintops, or mid-slope) indicate low infiltration rates and therefore 
low GDEs potential (Fatema et al., 2023). 

TPI=M0 −

∑
n− 1Mn

n
(2) 

where M0 is the elevation of the evaluation model point, Mn is the grid 
elevation and n the total number of neighboring points included in the 
assessment.

Chania Plain’s TPI map (Fig. A.12) has been produced based on E 
dataset and Focal Statistic and Raster Calculator tools in ArcGIS. The 
Terrain Roughness Index (TRI) is a geomorphometric index that iden-
tifies and quantifies the geometry of land-surface terrain in the area 
under investigation and influences groundwater potential (Li et al., 
2023); therefore, TRI is proposed by Duran-Llacer et al. (2022) as a 
predictor of pGDEz. TRI (Fig. A.13) is calculated based on Eq. (3), 
proposed by Riley et al. (1999), and for the present analysis the related 
ArcGIS tool has been applied, using E dataset as input. 

TRI=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

(xi − xc)
2

√

(3) 

where xc is the elevation of the center cell and xi is the elevation of each 
of the neighboring cells of xc. 

- Climatic variables

Rainfall’s distribution and intensity affect runoff water and 
groundwater recharge and, therefore, affect groundwater potential and 
GDEs potential and can be used as input criteria in pGDEz mapping 
(Duran-Llacer et al., 2022; Pandey et al., 2023). Rainfall data retrieved 
from 4 local monitoring stations (Alikianos, City of Chania, Kolymvari, 
Platanias) have been used as input in order to produce annual rainfall 
maps, for the preparation for the wet year 2017 and the dry year 2022 
(Fig. A.14 and A.15, respectively), based on the Inverse Distance 
Weightage (IDW) interpolation method available in ArcGIS. It is worth 
noting that the years 2017 and 2022 have been selected as typical of the 
wet and dry conditions, respectively, during the last decade in Chania 
Plain. Specifically, in 2017 the annual rainfall in the wider area ranges 
from 728 mm to 922 mm, while in 2022 it ranges from 518 mm to 810 
mm. The United Nations Environmental Programme Aridity Index (AI) 
(Eq. (4)) is also proposed in the literature as a predictor of GDEs pres-
ence, since it provides information on evapotranspiration processes and 
rainfall deficit for potential vegetative growth (Middleton and Thomas, 
1992; Gomes Marques et al., 2019; Duran-Llacer et al., 2022). A rather 
humid environment decreases the vegetation dependence on ground-
water and, therefore, in areas with high AI, low GDEs potential is 
expected. 

AI=
R

PET
(4) 

where R is the rainfall and PET is the potential evapotranspiration.
In the present analysis, temperature data from the 4 local monitoring 

stations have been used as input in SPEI R Package in order to estimate 
PET based on Thornthwaite method, as proposed by UNEP 
(Thornthwaite, 1948). Since the AI was calculated in the locations of the 
4 monitoring stations, the IDW tool in ArcGIS has been applied to pro-
duce the Chania Plain’s AI maps for the years 2017 and 2022 (Fig. A.16 
and A.17, respectively). As the average temperature difference between 
the years 2017 and 2022 observed in the 4 meteorological stations is 
lower than 0.2 ◦C, AI follows the rainfall’s pattern. 

- Multispectral indices

The Normalized Difference Vegetation Index (NDVI) is widely used 

as an input in pGDEz mapping, since it provides useful information on 
vegetation greenness and therefore it can be used for delineating 
terrestrial GDEs (Gou et al., 2015; Duran-Llacer et al., 2022; Xu et al., 
2022; Pandey et al., 2023; Rampheri et al., 2023). NDVI is estimated 
based on Eq. (5). 

NDVI=
ρNIR − ρred

ρNIR + ρred
(5) 

where ρNIR is the spectral reflectance measurements acquired in the 
near-infrared region and ρred is the spectral reflectance measurements 
acquired in the red (visible) region.

The Enhanced Vegetation Index (EVI) is estimated based on Eq. (6)
and it is also a greenness index that can be related to GDEs presence (Liu 
et al., 2021; Duran-Llacer et al., 2022). 

EVI=2.5*
ρNIR − ρred

ρNIR + 6*ρred − 7.5*ρblue + 1
(6) 

where ρblue is the spectral reflectance measurements acquired in the blue 
region.

Another multispectral parameter that is proposed as a predictor of 
GDEs presence is the Normalized Difference Wetness Index (NDWI), 
which describes the crop’s water stress level and is calculated based on 
Eq. (7) (Gao, 1996; Duran-Llacer et al., 2022). 

NDWI=
ρNIR − ρSWIR

ρNIR + ρSWIR
(7) 

where ρSWIR is the spectral reflectance measurements acquired in the 
shortwave-infrared region.

Τhe three multispectral indices (NDVI, EVI, NDWI) in Chania Plain 
have been estimated via ArcGIS raster calculator using Sentinel-2 sat-
ellite data of the wet year 2017 and dry year 2022 (Copernicus Data 
Space Ecosystem, 2024). Specifically, satellite images of the dry season 
for each studied year have been acquired, as vegetation that remains in 
good health during the dry season is potentially groundwater dependent 
(Barron et al., 2014). The generated maps depicting the multispectral 
indices in Chania Plain are shown in Fig. A.18-23.

3.3. Criteria correlation assessment

In order to proceed with the criteria correlation assessment, the 
values of the quantitative criteria (G, Gm and LULC) have been quan-
tified using a 5-point scale, based on the following assumptions. 

i) G: The criterion quantification has been based on the perme-
ability of the geological formations. Specifically, 5 classes have 
been generated: 1 - impermeable geological structures, 2 - 
geological formations of low permeability, 3 - geological forma-
tions of moderate permeability, 4 - geological formations of high 
permeability, 5 - geological formations of very high permeability. 
The classification of the Chania Plain formations in terms of 
permeability has been based on the geological map of the Insti-
tute of Geology and Mineral Exploration and the final map is 
depicted in Fig. A.1 (Greek Ministry of Environment and Energy, 
2024).

ii) Gm: In order to quantify the criterion values, the related litera-
ture has been reviewed (Duran-Llacer et al., 2022; Pandey et al., 
2023) and the following classes have been adopted: 1 - dissected 
hills, 2 - low dissected hills, 3 - hillside, 5 - valleys with alluvial. 
The final reclassified map is depicted in Fig. A.2.

iii) LULC: The effect of LULC on pGDEz has been quantified by 
adapting the results of an experts’ survey conducted by the au-
thors’ team focusing on LULC impact on groundwater contribu-
tion on environmental flow (i.e. on GDEs). The reclassification of 
the LULC map (Fig. A.3) has been based on the following classes: 
1 – airports, ports, 2 - road and rail networks and associated land, 
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3 - sport and leisure facilities, discontinuous urban fabric, com-
plex cultivation patterns, 4 - agricultural land with significant 
areas of natural vegetation, olive groves, fruit trees and berry 
plantations, 5 - broad-leaved forest, sclerophyllous vegetation, 
natural grasslands.

The correlation between the 18 criteria has been estimated using the 
ArcGIS Multivariate toolset (Duran-Llacer et al., 2022). The criteria that 
present correlations greater than 0.5 have been considered for elimi-
nation from the final model.

3.4. Criteria normalization

As the selected criteria are expressed in different measurement units 
or scales, a normalization procedure has been applied. Specifically, 
min–max normalization was adopted, transforming the criteria values 
into standard scales, which range between 0 and 1, based on Eqs. (8) and 
(9). Min–max normalization is a well-known normalization technique 
used in multi-criteria analysis (MCA) (Mhlanga and Lall, 2022), adopted 
in GIS-based MCA mapping methodologies (Al-Abadi et al., 2017; Meng 
et al., 2021).

For benefit criteria: 

xij,norm =
xij − xj,min

xj,max− xj,min
(8) 

For cost criteria: 

xij,norm =
xj,max − xij

xj,max− xj,min
(9) 

where xij,norm is the normalized value of the criteria j on the grid cell i, xij 
is the original value of the criteria j on the grid cell i, xj, min is the original 
minimum value of the criterion j and xj,max is the original maximum 
value of the criterion j.

3.5. Criteria weighting

- The MW method

The MW method assumes that all criteria are of equal importance 
and can be adopted in the absence of information or when the infor-
mation is not sufficient (Jahan et al., 2012). Based on MW, the weights 
can be estimated through Eq. (10) (Odu, 2019). 

wj,MW =
1
k

(10) 

where wj,MW is the weight of the criterion j based on MW method and k is 
the total number of input criteria. 

- The SD weighting method

To calculate criteria weights based on SD method, the following Eq. 
(11) is used (Odu, 2019; Mukhametzyanov, 2021). 

wj,SD =
σj

∑k

1
σj

(11) 

where wj,SD is the weight of the criterion j based on the SD method and σj 
is the SD of the normalized values of criterion j.

The SD of the normalized values of each criterion derives from the 
relative raster’s statistics. 

- The entropy weighting method

The entropy weighting method, introduced by Shannon (1948), is 
based on the concept of measuring the uncertainty associated with 

random variables (Qu et al., 2022) and it constitutes of the following 
steps. 

i. Criteria normalization based on Eqs. (8) and (9).
ii. Entropy estimation for criterion j based on Eq. (12).

Нj = −

∑m

1

(
fi,j*ln fi,j

)

ln m
(12) 

where Hj is the entropy of criterion j, m is the total number of cells, and fj, 
j is the proportion of criterion j in the cell i.

In the present analysis, parameter fj,j has been estimated based on Eq. 
(13), proposed by Meng et al. (2021). 

fi,j =
0.0001 + xij,norm

∑m

1

(
0.0001 + xij,norm

) (13) 

iii. Entropy weight estimation for criterion j based on Eq. (14).

wj,ENTR =
1 − Нj

k −
∑k

1
Нj

(14) 

where wj,ENTR is the weight of the criterion j based on the entropy 
method. 

- The CRITIC weighting method

The CRITIC weighting method, proposed by Diakoulaki et al. (1995), 
constitutes a widely applied objective weighting method, which ad-
dresses both the contrast intensity of each criterion (i.e. the degree of 
variability - SD) and the conflicting relationships between criteria 
(Krishnan et al., 2021). Criteria weights based on CRITIC method are 
estimated as follows. 

i. Criteria normalization based on Eqs. (8) and (9).
ii. Estimation of the amount of information contained in criterion j 

based on Eq. (15).

Cj = σj*
∑k

1

(
1 − rj,l

)
(15) 

where Cj is the amount of information contained in criterion j and rj,l is 
the correlation coefficient between criteria j and l. 

iii. CRITIC weight estimation for criterion j based on Eq. 16

wj,CRITIC =
Cj

∑k

1
Cj

(16) 

where wj,CRITIC is the weight of the criterion j based on the CRITIC 
method.

3.6. Final model

Since the final set of criteria has been selected and normalized and 
their weights have been assigned, the pGDEz map has been developed 
with the Spatial Analysis tool, following Eq. (17). 

pGDEz, i=
∑

j
wj,wm*xij,norm (17) 

where pGDEz,i is the GDEs potential in cell i and wj,wm is the weight of 
criteria j, estimated based on the indicated weighting method wm.
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The values of the final map have been classified into 5 classes of 
GDEs potential (very low, low, moderate, high, very high), using Jenks 
natural breaks classification method in ArcGIS; a classification method 
widely applied in GIS-based MCA mapping (El-Hokayem et al., 2023; Li 
et al., 2023).

3.7. Model’s validation

In order to assess the developed model and the impact of the 
weighting method on the final GDEs mapping, known spring locations 
-provided by Geoportal of Decentralized Administration of Crete (2024)- 
have been used for validation. Specifically, in spring locations, it is ex-
pected to meet zones of higher GDEs potential, as proposed by Fildes 
et al. (2023).

4. Results & discussion

4.1. Selection of final criteria

The selection of the final set of criteria of the multi-criteria (MCA) 
model is based on the correlation assessment presented in Table A.1. In 
alignment with existing literature, significant correlations (≥0.5) were 
identified among specific criteria pairs, leading to the exclusion of 
highly correlated parameters in the final model configuration. 
Specifically. 

• G-Gm-Dd correlation: In the present analysis, Geomorphology (Gm) 
showed strong correlations with Geology (G) and Drainage density 
(Dd) (r = 0.69 and 0.52, respectively), and therefore it is discarded 
from the final model (Eq. (17)). Geomorphological characteristics of 
an area, created by geological processes, have a major influence on 
landslides and are determined by the lithologic properties of that 
area (Guhananth et al., 2023). Additionally, Gm is expected to show 
high correlation with Dd, as Dd is an index of fluvial geomorphology 
and is correlated with valley density according to the literature (Rai 
et al., 2017; Gao et al., 2022).

• E-Sl-TRI correlation: In the Chania Plain, a significant correlation 
has been identified between Elevation (E) and Slope (Sl) (r = 0.54), E 
and Terrain Roughness Index (TRI) (r = 0.56), TRI and Sl (r = 0.98). 
In general, the relationship of E and Sl is considered region-specific, 
and their correlation commonly ranges between − 0.50 and + 0.50, 
while their relationship is parabolic (Evans and Cox, 1999). There-
fore, the identified correlation level among E and Sl in Chania Plain 
(r = 0.54) is very close to the general upper limit (0.50). Considering 
that (a) in the specific analysis E is correlated with the other two 
variables, and (b) there is a general relationship between E and Sl 
-even parabolic, it is proposed to exclude E from the final model. The 
relationship between Sl and TRI is supported by literature; in Habib 
(2021) and Trevisani et al. (2023), TRI is highly correlated with Sl. In 
the present analysis, Sl has been selected as an input to the final 
model, since, according to the literature review in Choudhary et al. 
(2023), Sl is more commonly met on MCA groundwater potential 
zones mapping methodologies.

• Ct-TPI correlation: Topographic Position Index (TPI) is significantly 
correlated with the related Curvature (Ct) (r = 0.57); an expected 
finding since both measure terrain concavity and convexity. Among 
the two variables, TPI has been selected as input criteria to the final 
model as, according to Minár et al. (2020), curvature-related 
morphometric variables, such as TPI, are reported in the literature 
as more successful than Ct.

• NDVI-EVI-NDWI correlation: The multispectral indices in Chania 
Plain present high correlation with each other (r > 0.70) both for the 
wet (2017) and the dry (2022) year under study. The high correla-
tion between Normalized Difference Vegetation Index (NDVI) and 
Enhanced Vegetation Index (EVI) has been expected as both indices 
quantify vegetation greenness; however, EVI corrects for some 

atmospheric conditions and canopy background noise and with 
improved sensitivity in dense vegetation areas (U.S. Geological 
Survey, 2024). Additionally, high NDVI-EVI coefficients values are 
reported widely in literature (e.g. Alademomi et al., 2020; Bari et al., 
2021; Lykhovyd et al., 2023). NDVI and Normalized Difference 
Wetness Index (NDWI), although focusing on vegetation density and 
on vegetation water content respectively, are both used for moni-
toring plants health and therefore it is expected to be correlated. 
Consequently, a strong relationship among NDVI and NDWI is re-
ported in the literature (e.g. Bhattacharya et al., 2021; Strashok 
et al., 2022). Among the examined multispectral indices, NDVI has 
been included in the final model, since it is considered the most 
popular and widely applied index used for vegetation assessment 
(Huang et al., 2021) and is also included in all MCA mapping 
methodologies of Table 1.

• R-AI correlation: Rainfall R and aridity index (AI) present signifi-
cant correlation for both years under study, as also reported in 
literature (Sharma and Patel, 2024).

Therefore, the final set of criteria consists of the following 11 pa-
rameters: G, LULC, Sl, Prwb, Fa, Dd, Ld, TWI, TPI, AI, and NDVI.

4.2. Criteria weighting

Table 2 details the criteria weights and rankings derived from the 4 
objective weighting methods (MW, Entropy, SD, CRITIC) across 2017 
and 2022. Geology (G) consistently emerged as the predominant factor 
influencing GDEs presence at an area, followed by the criterion AI. G is 
also considered as the most important factor in Duran-Llacer et al. 
(2022) proposed model, for which experts’ opinion has been used as a 
weighting method. Conversely, based on Entropy-based weights, no 
criterion is clearly ranked as more important. However, entropy, SD, and 
CRITIC methods rank flow accumulation (Fa) as the least important 
criterion, with the lowest relative weight.

4.3. pGDEz mapping

Figs. 3 and 4 illustrate the GDEs potential maps generated for 2017 
and 2022, respectively. These maps, quantified in Fig. 5 which presents 
the areal extent of each pGDEz, showcase a prevalence of low to mod-
erate potential GDEs zones in Chania Plain, stable across the weighting 
methods. Very high pGDEz % coverage for the year 2017 ranging from 
10.3 % to 17.3 % according to the weighting method used, while for the 
year 2022 the relative percentage ranges from 10.3 % to 20.6 %. 
Comparing the areal extent of pGDEz of the wet and the dry year, the 
MW method does not identify variance on very high pGDEz; on the 
contrary, Entropy, SD and CRITIC methods identify an increase of 
1.2–4.2 % -depending on the weighing method-in the very high pGDEz 
of the dry year 2022 compared to the wet year 2017. This finding follows 
the pattern indicated in Duran-Llacer et al. (2022), where also an 
increased coverage of the higher pGDEz during the relative drier year is 
observed. The aforementioned result is rather expected as the more 
rainfall, the lower the probability of GDEs presence (Duran-Llacer et al., 
2022).

4.4. Model’s validation

As previously described, the validation of the developed model has 
been carried out by comparing the resulting potential GDEs zone 
(pGDEz) with spring locations. Table 3 summarizes the model’s per-
formance for the years 2017 and 2022 and for the 4 weighting methods, 
compared to the known springs’ locations. Based on the results depicted 
in Table 3, a high level of model reliability is revealed for all the 
weighting methods reviewed, as in all cases, none of the springs are 
located in very low pGDEz and only one is assigned to low pGDEz. 
However, CRITIC method concludes to the most reliable results with the 
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higher average percentage of springs locations on high and higher po-
tential zones for the two examined years (85 % in year 2017 and 69 % in 
year 2022). The validation percentage values are comparable to those 
(76.5 in higher, 8.8 % in moderate, 8.8 % in low, and 5.9 % in no pGDEz) 
reported in Fildes et al. (2023). It is worth noting that the model has 
been proved more reliable in the wet year, a fact that can be interpreted 
by the climatic characteristics of the study area and the adopted 
normalization procedure. Specifically, three of the known springs’ lo-
cations are classified as high to very high pGDEz in the wet year (2017), 
whereas as moderate zones in the dry year (2022). This differentiation 
could be explained by the spatial variability of Aridity Index (AI), which 
is wider in the dry year (0.6≤ AI2022≤0.9) compared to the AI spatial 

variability of the wet year (0.8≤ AI2017≤1.0). Therefore, via the 
normalization procedure, locations characterized by high AI values both 
in the dry and the wet year (ΔAI ≤11 %) are assigned in varying pGDEz. 
However, the methodology satisfactorily predicts the location of pGDEz 
in both wet and dry years as the majority of the existing springs were 
characterized at least of moderate GDEs potential in both cases.

As observed in Table 1, another popular methodology for validating 
GIS-based GDEs mapping models is the comparison of the groundwater 
table with the identified pGDEz. As reported in the literature, shallow 
groundwater table indicates higher likelihood of GDEs presence (Eamus 
et al., 2016; Liu et al., 2021; Xu et al., 2022); specifically, considering 
the complexity of the plant root systems (i.e. terrestrial GDEs) and the 

Table 2 
Weights (W) and Rankings (Ra) of criteria based on the MW, the Entropy, the SD, and the CRITIC weighting methods.

Weighting Method MW Entropy SD CRITIC

Year 2017 2022 2017 2022 2017 2022 2017 2022

Criteria W (%) Ra W (%) Ra W (%) Ra W (%) Ra W (%) Ra W (%) Ra W (%) Ra W (%) Ra

Fa 9.1 1 9.1 1 6.8 11 6.8 11 2.3 11 2.3 11 2.2 11 2.2 11
Sl 9.1 1 9.1 1 9.8 3 9.8 3 5.1 9 5.1 9 5.1 9 5.1 9
Dd 9.1 1 9.1 1 9.8 5 9.8 5 11.4 3 11.4 3 12.2 3 11.9 3
TPI 9.1 1 9.1 1 9.8 2 9.8 2 2.3 10 2.3 10 2.3 10 2.2 10
Ld 9.1 1 9.1 1 7.6 9 7.6 9 7.8 7 7.8 7 8.0 6 7.6 7
G 9.1 1 9.1 1 9.6 8 9.6 8 23.1 1 23.1 1 23.5 1 23.4 1
Prwb 9.1 1 9.1 1 9.8 1 9.8 1 6.3 8 6.3 8 6.1 8 6.1 8
TWI 9.1 1 9.1 1 9.7 6 9.7 7 8.9 5 8.9 5 8.6 5 8.6 5
LULC 9.1 1 9.1 1 7.6 10 7.6 10 9.6 4 9.6 4 9.4 4 9.5 4
NDVI 9.1 1 9.1 1 9.8 4 9.8 4 8.2 6 7.8 6 7.8 7 8.1 6
AI 9.1 1 9.1 1 9.7 7 9.7 6 15.0 2 15.4 2 14.8 2 15.3 2

Fig. 3. Likelihood of GDEs presence in Chania Plain, based on the MW (a), the entropy (b), the SD (c), and the CRITIC (d) weighting methods, for the year 2017.

Fig. 4. Likelihood of GDEs presence in Chania Plain, based on the MW (a), the entropy (b), the SD (c), and the CRITIC (d) weighting methods, for the year 2022.
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difficulty to quantify the rooting depth, water table depth less than 20 m 
can be used as an indicator of potential GDEs (Liu et al., 2021; Rampheri 
et al., 2023). However, Xu et al. (2022) rather question the specific 
validation methodology as they highlight the fact that root systems of 
even 32m depth have been reported in the literature, and, additionally, 
groundwater may affect vegetation by acting on other types of water (e. 
g. capillary upwelling). For the sake of completeness of the present 
analysis, the CRITIC-based model’s results -i.e. the most reliable ones 
based on the known springs locations validation procedure-have been 
further validated based on groundwater level (GWL) data; GWL data for 
4 monitoring stations and for the year 2017, provided by Decentralized 
Administration of Crete, have been compared to the pGDEz identified 
based on the CRITIC method. Based on the results presented in 
Table A.2, three of the monitoring stations are located in shallow 
groundwater areas and the specific locations have been characterized as 
moderate to very high pGDEz. The fourth monitoring station (HSGME) is 
located in deep groundwater (~35 m groundwater table depth); how-
ever, the model has assigned the characterization of high pGDEz in the 
location. Considering that HSGME monitoring station is located in Agya 
Lake’s Park and surrounded by the Agya’s springs complex, the proba-
bility of the model’s accuracy should be considered as the area’s vege-
tation may be affected by the capillary zone, as proposed by Xu et al. 
(2022).

5. Conclusions

This study introduces a comprehensive GIS-based multi-criteria 
analysis (MCA) methodology for mapping the potential presence of 
groundwater-dependent ecosystems (GDEs), representing a significant 
advancement in sustainable aquifer management. This approach aims to 
overcome the challenges associated with subjective weighting methods 
(Odu, 2019; Şahin, 2021), such as the biases and inefficiencies inherent 
in methods like Analytic Hierarchy Process (AHP) and the Delphi 
method. The research consistently performed a correlation assessment 
across a large set of parameters related to GDEs presence, ultimately 
selecting a refined set of input criteria for the proposed GIS-based MCA 
model: Geology (G), Land Use and Land Cover (LULC), Slope (Sl), 

Proximity to Water Bodies (Prwb), Flow Accumulation (Fa), Drainage 
density (Dd), Lineament density (Ld), Topographic Wetness Index 
(TWI), Topographic Position Index (TPI), Aridity Index (AI), and 
Normalized Difference Vegetation Index (NDVI). The evaluation of these 
criteria weights using four objective methods established that the 
CRITIC method provides the most reliable weight assignments, appli-
cable across varied climatic conditions such as wet and dry years.

The validation results reinforce the suitability of the proposed set of 
input criteria and the CRITIC weighting method in mapping the likeli-
hood of GDEs in a practical, time-efficient, and cost-effective manner. 
This approach underscores the significant variability in GDEs areal 
extent over time, emphasizing the necessity of annual monitoring to 
capture the spatio-temporal changes driven by climatic variability and 
human activities. Such insights are crucial for adaptive management 
strategies that ensure ecological sustainability and water resource 
preservation.

The proposed methodology offers considerable potential for trans-
ferability to other geographical areas. This is supported by the avail-
ability of fundamental input layers for environmental management or by 
leveraging remote sensing datasets that are easily computed. Moreover, 
the adaptability of the CRITIC method to easily determine criteria 
weights for different areas helps in eliminating the subjectivity factor, 
enhancing the model’s applicability in diverse settings.

However, to further strengthen the robustness of this model, it is 
recommended that future studies apply this methodology in regions 
with varying climatic, hydrological, and geological characteristics. This 
expansion will test the universal applicability and reliability of the 
model under different environmental scenarios. Despite these consid-
erations, the proposed model constitutes a powerful tool towards 
developing a comprehensive GDEs monitoring system, particularly in 
areas where obtaining in-situ data presents significant challenges. Its 
implementation could significantly advance our ability to manage 
groundwater resources sustainably and protect dependent ecosystems 
from the burgeoning impacts of global climate change and anthropo-
genic pressures. To this end, this study not only contributes to the aca-
demic discourse on groundwater management but also offers practical 
solutions for policymakers and practitioners focused on preserving vital 
ecological services and maintaining fundamental environmental 
services.

Glossary

AHP Analytic Hierarchy Process
AI Aridity Index
CRBMP River Basin Management Plan of Crete
CRITIC Criteria Importance Through Intercriteria Correlation
Ct Curvature
Dd Drainage density
E Elevation
ETa Evapotranspiration
EVI Enhanced Vegetation Index
Fa Flow accumulation
G Geology
GDEs Groundwater-Dependent Ecosystems
GIS Geographic Information Systems
Gm Geomorphology
GWL Groundwater level
IDW Inverse Distance Weightage

(continued on next page)

Fig. 5. Areal extent (% of the total area) of the pGDEz produced based on the 
MW, the Entropy, the SD, and the CRITIC weighting methods.

Table 3 
Springs per pGDEz category—actual and percentage values—produced based on the MW, the Entropy, the SD, and the CRITIC weighting methods.

Springs per zone MW Entropy SD CRITIC

2017 2022 2017 2022 2017 2022 2017 2022

No of springs on low pGDEz 1 (8 %) 0 (0 %) 1 (8 %) 1 (8 %) 1 (8 %) 0 (0 %) 1 (8 %) 0 (0 %)
No of springs on moderate pGDEz 2 (15 %) 7 (54 %) 2 (15 %) 5 (42 %) 1 (8 %) 5 (38 %) 1 (8 %) 4 (31 %)
No of springs on high pGDEz 7 (54 %) 4 (31 %) 7 (54 %) 5 (42 %) 6 (46 %) 5 (38 %) 6 (46 %) 6 (46 %)
No of springs on very high pGDEz 3 (23 %) 2 (15 %) 3 (23 %) 1 (8 %) 5 (38 %) 3 (23 %) 5 (38 %) 3 (23 %)
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(continued )

Ld Lineament density
Lth Lithology
LULC Land Use and Land Cover
MCA Multi-criteria analysis
MW Mean Weight
NDCVI Normalized Difference Coefficient of Variation Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Wetness Index
PET Potential Evapotranspiration
pGDEz Potential Groundwater-Dependent Ecosystems (GDEs) Zone
Prwb Proximity to rivers and water bodies
PVFC Photosynthetic Vegetation Fractional Cover
R Rain
Ra Ranking
SD Standard Deviation
Sl Slope
TCW Tasseled Cap Wetness
TPI Topographic Position Index
TRI Terrain Roughness Index
TWI Topographic Wetness Index
W Criteria weight
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Appendix

Fig. А.1. (a) Chania Plain Geological formations and groups (G) map and (b) the related reclassified map
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Fig. А.2. Chania Plain Geomorphology (Gm) map

Fig. А.3. (a) Chania Plain Land Use and Land Cover (LULC) map and (b) the related reclassified map
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Fig. А.4. Chania Plain Elevation (E)

Fig. А.5. (a) Chania Plain Slope (Sl) map and (b) the related reclassified map
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Fig. А.6. Chania Plain Curvature (Ct) map

Fig. А.7. (a) Chania Plain Proximity to water bodies (Prwb) map and (b) the related reclassified map

Fig. А.8. (a) Chania Plain Flow accumulation (Fa) map and (b) the related reclassified map
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Fig. А.9. (a) Chania Plain Drainage density (Dd) map and (b) the related reclassified map

Fig. А.10. (a) Chania Plain Lineament density (Ld) map and (b) the related reclassified map

Fig. А.11. (a) Chania Plain Topographic Wetness Index (TWI) map and (b) the related reclassified map
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Fig. А.12. (a) Chania Plain Topographic Position Index (TPI) map and (b) the related reclassified map

Fig. А.13. Chania Plain Terrain Roughness Index (TRI) map
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Fig. А.14. Chania Plain rainfall (R) map in 2017

Fig. А.15. Chania Plain rainfall (R) map in 2022
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Fig. А.16. (a) Chania Plain Aridity Index (AI) map and (b) the related reclassified map in 2017

Fig. А.17. (a) Chania Plain Aridity Index (AI) map and (b) the related reclassified map in 2022

Fig. А.18. (a) Chania Plain Normalized Difference Vegetation Index (NDVI) map and (b) the related reclassified map in 2017
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Fig. А.19. (a) Chania Plain Normalized Difference Vegetation Index (NDVI) map and (b) the related reclassified map in 2022

Fig. А.20. Chania Plain Enhanced Vegetation Index (EVI) map in 2017
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Fig. A.21. Chania Plain Enhanced Vegetation Index (EVI) map in 2022

Fig. А.22. Chania Plain Normalized Difference Wetness Index (NDWI) map in 2017

D. Charchousi et al.                                                                                                                                                                                                                            Groundwater for Sustainable Development 30 (2025) 101457 

19 



Fig. A.23. Chania Plain Normalized Difference Wetness Index (NDWI) map in 2022

Table A. 1 
Criteria correlation matrix

Table A. 2 
Water table depth and pGDEz based on CRITIC weighting method for the year 2017

Monitoring station Water table depth pGDEz

HSGME ~34.7 High
Myloniana ~7.3 Moderate
G188 ~14.7 Very high
G122 ~8.1 Moderate
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