

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant
agreement No 101003881

D4.4 Core module of the self-
learning nexus engine

Lead: Lluís Echeverria (Eurecat)
Date : 30/06/2024

Ref. Ares(2024)4617947 - 26/06/2024

D4.4 Core module of the self-learning nexus engine

2 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

Project Deliverable

Project Number Project Acronym Project Title

101003881

NEXOGENESIS Facilitating the next generation of effective
and intelligent water-related policies,
utilizing artificial intelligence and
reinforcement learning to assess the water-
energy-food-ecosystem (WEFE) nexus

Instrument: Thematic Priority

H2020 RIA LC-CLA-14-2020

Title

D4.4 Core module of the self-learning nexus engine

Contractual Delivery Date Actual Delivery Date

M34: June 2024 M34

Start Date of the project Duration

01 September 2021 48 months

Organisation name of lead contractor for this deliverable Document version

EUT 1.0

Dissemination level Deliverable Type

Public Demonstrator

Authors (organisations)

Lluís Echeverria (EUT), Chaymaa Dkouk (EUT), and Nuria Nievas (EUT)

Reviewers (organisations)

Lydia Vamvakeridou-Lyroudia (KWR)

D4.4 Core module of the self-learning nexus engine

3 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

Abstract

Deliverable D4.4 Core module of the self-learning nexus engine is classified as a
"Demonstrator." This document accompanies the deliverable and offers detailed explanations
about the algorithmic fundaments and technical aspects of the Self-Learning Nexus
Assessment Engine (SLNAE) and the NXG DSS. It is intended to complement the digital
solutions developed from Task T4.4 Reinforcement Learning engine.

The self-learning nexus engine is the core mechanism that supports multi-objective decision-
making in the SLNAE tool. The self-learning term refers to the underlying Artificial
Intelligence (AI) and Machine Learning (ML) technology, enabling the creation of agents
that autonomously learn (i.e. self-learning) optimal policy combinations (i.e. policy
packages) to achieve the nexus-related objectives. We propose Multi Objective (Deep)
Reinforcement Learning (MODRL) as the foundational family of ML algorithms to
implement the NXG Decision Support System (DSS).

The current version of the Self-Learning Nexus Assessment Engine is embedded into the
public release of the SLNAE at the following urls: https://slnae-dev.nexogenesis.eu or
https://nepat-dev.nexogenesis.eu.

The SLNAE acronym, which is the reference to this tool in the Grant Agreement, has been
changed to NEPAT (Nexus Policy Assessment Tool), during the project. This was decided
because it was easier to pronounce than SLNAE and also it reflected better for the general
audience the content of the tool. In this document, the two acronyms SLNAE and NEPAT
are both being used indiscriminately and they refer to the same tool. This has been done on
purpose, because SLNAE is mentioned in the Grant Agreement and also because several
related actions have started and happened under with the tool named SLNAE, while now,
more recent activities are referring to NEPAT and this document is an intermediate report for
this tool. By the end of the project, NEPAT will be the name of this tool.

Related Deliverables:
D3.4 Complexity science models implemented for all the Case Studies including explanatory
manuals
D3.6 Sensitivity/Uncertainty Analysis Report
D4.1 Self-learning nexus engine specifications and technical design
D4.3. Simulation Policy Framework

Keywords
SLNAE; NEPAT, Nexus Decision Support System, Multi-Objective optimization, Multi-Objective Deep
Reinforcement Learning

https://slnae-dev.nexogenesis.eu/
https://nepat-dev.nexogenesis.eu/

D4.4 Core module of the self-learning nexus engine

4 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

Abbreviation/Acronyms
CCS Convex Coverage Set
CS Case Study

DMORL Deep Multi-Objective reinforcement learning

DMP Data Management Plan

DRL Deep Reinforcement Learning

DSS Decision Support System

FNRL Fingerprint networked reinforcement learning

GUI/UI Graphical User Interface/User Interface

GA Grant Agreement

ICT Information and Communication Technologies

IDR Internal Data Repository

JSON JavaScript Object Notation

MDP Markov Decision Process.

ML Machine Learning

MOMDP Multi-Objective Markov Decision Process

MOO Multi-objective optimisation

MORL Multi-objective reinforcement learning

NEPAT Nexus Policy Assessment Tool

NXG Nexogenesis project

PCS Pareto Coverage Set

POMOMDP Partially Observable Multi-Objective Markov Decision Process

PQL Pareto Q learning

R Reward function

RL Reinforcement Learning

SDM System Dynamic Model

SLNAE Self-Learning Nexus Assessment Engine

SH Stakeholder

RP Reference Pathway

WEF Water-Energy-Food (Nexus)

WEFE Water-Energy-Food-Ecosystem (Nexus)

WP Work Package

D4.4 Core module of the self-learning nexus engine

5 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

Contents

Project Deliverable ... 2
Abbreviation/Acronyms ... 4
Contents .. 5
Figures .. 7
1. Introduction ... 8

1.1. Disclaimer .. 9
1.2. Links to the ICT4WATER Cluster .. 10
1.3. NEPAT: a new name for the SLNAE .. 11
1.4. Document structure .. 11

2. Requirements for the self-learning nexus engine development .. 12
2.1. Policies ... 13
2.2. Policy packages ... 14
2.3. Goals .. 15

2.3.1. Goals’ targets and years ... 16
3. A nexus multi-objective approach .. 17
4. Multi-objective RL: problem setting, taxonomy and algorithms 21

4.1. Multi-objective problem setting .. 21
4.2. Multi-objective taxonomy ... 22

4.2.1. A Monotonically increasing utility function .. 22
4.2.2. A linear utility function .. 23
4.2.3. Solution sets ... 23

4.3. Multi-objective Reinforcement learning algorithms ... 24
4.3.1. Pareto Q-learning ... 25
4.3.2. Envelope Q-learning .. 27

5. The Nexogenesis decision-making problem formalization .. 29
5.1. Stakeholders’ utility functions ... 30
5.2. The deterministic case ... 31

5.2.1. The state space ... 31
5.2.2. The action space ... 32
5.2.3. The reward function ... 33
5.2.4. Nexus Optimal Solutions ... 34

5.3. Stochastic case ... 36

D4.4 Core module of the self-learning nexus engine

6 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

6. Initial results .. 37
6.1. Jiu ... 38
6.2. Inkomati ... 39

6.2.1. Fixed policies ... 39
6.2.2. Dynamic policies .. 41

6.3. Lielupe ... 41
7. The NEPAT DSS .. 44
8. Conclusions ... 47
9. References ... 48
Annexes .. 50
Annex I ... 51

D4.4 Core module of the self-learning nexus engine

7 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

Figures
Figure 1. SLNAE UI. Beta version warning. ... 10
Figure 2. Left: NXG cross-WP data pipelines in the Internal Data Repository. Right: NXG co-
creation framework for Nexus Policy packages identification. Source: D4.1 12
Figure 3. NEPAT UI. Example of Policy modulation ... 14
Figure 4, NEPAT UI goal attributes view .. 16
Figure 5. Reinforcement Learning agent-environment interaction flow 18
Figure 6. Multi-Objective Reinforcement Learning agent-environment interaction flow 21
Figure 7. Decision support scenario diagram, extracted from [X] ... 29
Figure 8. Nexogenesis state space .. 32
Figure 9. Multi-objetive nexus problem example .. 35
Figure 10. Number of dominant solutions during PQL training in Jiu CS 38
Figure 11. Envelope network loss during training in Jiu CS ... 38
Figure 12. Number of dominant solutions during PQL training in Inkomati CS 40
Figure 13. Envelope network loss during training in Inkomati CS with fixed policies 40
Figure 14.Envelope network loss during training in Inkomati CS with dynamic policies every
5 years .. 41
Figure 15. Number of dominant solutions during PQL training in Lielupe CS 42
Figure 16. Envelope network loss during training in Lielupe CS .. 42
Figure 17. NEPAT UI. Decision Support System view ... 44
Figure 18. NEPAT UI. Decision Support System view providing policy package
recommendations ... 45

D4.4 Core module of the self-learning nexus engine

8 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

1. Introduction

The WEFE nexus framework highlights the intricate linkages between water, energy, food and
ecosystems dominated by complexity and modulated by climatic and socio-economic drivers.
For instance, water is essential for agriculture (food production) and energy generation
(hydropower and cooling in thermal power plants). Conversely, energy is needed for water
extraction, treatment, and distribution, as well as for food production and processing. This
interconnectedness creates a web of dependencies where actions in one sector can have
significant ripple effects across others.

In this context, decision-making face a multi-objective (MO) problem due to the complex and
often conflicting objectives inherent in managing these resources. Addressing the nexus
requires balancing the competing demands of each sector while considering their interrelated
impacts on sustainability, economic growth, and social well-being.

Instead of aggregating the various nexus objectives into a single scalar signal/objective for
planning or learning purposes, we consider them individually. This approach allows the end
user to define their own aggregation function, technically known as the utility function, based
on their preferences. By doing so, we avoid providing an imperfect solution that would restrict
the tool's recommendation scope. We also give more “freedom” to the users to express their
preferences.

The self-learning nexus engine is the core mechanism that supports MO decision-making in the
SLNAE tool. The self-learning term refers to the underlying Artificial Intelligence (AI) and
Machine Learning (ML) technology, enabling the creation of agents that autonomously learn
(i.e. self-learning) optimal policy combinations (i.e. policy packages) to achieve the nexus-
related objectives. We propose Multi Objective (Deep) Reinforcement Learning (MODRL) as
the foundational family of ML algorithms to implement the NXG Decision Support System
(DSS).

Each Case Study (CS) represents a unique optimization challenge, formulated as an individual
problem to optimise in their own, unique, policy decision space. Additionally, there are three
further layers of complexity. First, each CS includes a set of reference scenarios (RCP-SSP
combinations), each depicting different potential future conditions. Second, the complexity
models implemented by WP3 incorporate randomness in the input data, allowing for both
deterministic and stochastic execution modes. Finally, one of the CSs (Inkomati) introduces an
additional decision-making dimension: the year when a policy is applied, which we call the
‘dynamic policies’ mode, in contrast to the ‘static mode’ with fixed policies. All these options
are available through different implementations of the CSs’ System Dynamic Models (SDMs).
Consequently, an agent will be trained for every combination of CS, reference scenario,
randomness execution mode, and, for the Inkomati CS, i.e., the policy mode.

D4.4 Core module of the self-learning nexus engine

9 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

Deliverable D4.4 Core module of the self-learning nexus engine is classified in th GA as a
"Demonstrator." This document accompanies the deliverable and offers detailed explanations
about the algorithmic fundaments and technical aspects of the Self-Learning Nexus Engine and
the NXG DSS. It is intended to complement the digital solutions developed from Task T4.4
Reinforcement Learning engine.

The current version of the Self-Learning Nexus Engine is embedded into the public release of
the SLNAE at the following urls: https://slnae-dev.nexogenesis.eu or https://nepat-
dev.nexogenesis.eu. This version will be further updated with data from each CS.

1.1. Disclaimer

The public version of the SLNAE/NEPAT is currently under development and has been
designated as a Beta version (Figure 1). All its modules, including the Self-Learning Nexus
Engine and its components or inputs (i.e. SDMs, policies, goals, UI, etc) are undergoing
continuous validation and are subject to change. The results and screenshots in this
deliverable are provided solely to demonstrate that the Self-Learning Nexus Engine has
been successfully developed and integrated into the SLNAE.

Following the validation process, in which CSs and SHs will certify the behaviour of the
SLNAE/NEPAT modules, the final version of the tool will be deployed. In the upcoming
months, the Self-Learning Nexus Engine will be continuously run and adjusted to meet the final
requirements of CSs and SHs. This process will be expedited depending on the CS. For the
front runners, the Self-Learning Nexus Engine will be ready by August 2024 (M36), including
the Inkomati CS. For the followers, it will be ready by December 2024 (M40).

The final version of the SLNAE/NEPAT is expected to be ready by February 2025 (M42) and
will be reported in D4.5 Final version of the self-assessment nexus engine with the
corresponding validation (M42). This final version will include additional secondary
functionalities that are not necessary for the success of the upcoming Workshops (WSs). with
the CS, to be organised in collaboration with WP1 and WP5.

https://slnae-dev.nexogenesis.eu/
https://nepat-dev.nexogenesis.eu/
https://nepat-dev.nexogenesis.eu/

D4.4 Core module of the self-learning nexus engine

10 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

Figure 1. SLNAE UI. Beta version warning.

1.2. Links to the ICT4WATER Cluster

WP4 is considered the ‘digital’ WP in the Nexogenesis project. Thus, it is the natural link
between the project and the ICT4WATER Cluster1.

The outcomes of the task T4.4 are specially linked to the ICT4WATER Updated Digital Water
Action Plan2 and its ‘Intelligent and smart systems’, ‘Actor engagement and co-creation’ and
‘Policies’ Action Groups3.

With regards to the actions and activities outlined in the Digital Water Action Plan, this
deliverable and the SLNAE/NEPAT tool (developed under WP4 in NXG) contributes to the
following (all action numbers refer to the Digital Water Action Plan):

- The ‘Intelligent and smart systems’ action 2 activities 1 & 2: A multi-optimization
decision-making framework (the Self-Learning Nexus Engine), based on Deep
Reinforcement Learning, is implemented for decision support.

- The ‘Intelligent and smart systems’ action 5 activities 1 & 2: Uncertainty is taken into
account in the integrated complexity science models.

1 https://ict4water.eu/
2 https://ict4water.eu/wp-content/uploads/2023/06/Update-Digital-Water-Action-Plan-V7.pdf
3 https://ict4water.eu/action-groups/

https://ict4water.eu/
https://ict4water.eu/wp-content/uploads/2023/06/Update-Digital-Water-Action-Plan-V7.pdf

D4.4 Core module of the self-learning nexus engine

11 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

- The ‘Actor engagement and co-creation’ action 1 activity 1: A public online tool (the
SLNAE) is developed.

- The ‘Actor engagement and co-creation’ action 2 activities 1 & 2: Stakeholders from
all nexus sectors are taken into account during the Nexogenesis co-creation process for
the SLNAE design.

- The ‘Policies’ action 5 activity 1: The SLNAE tool enables policy co-creation.
- The ‘Policies’ action 6 activity 2: The SLNAE tool enables improved management of

governance complexity including uncertainty and other factors.

1.3. NEPAT: a new name for the SLNAE

During the initial period of the project, it was necessary to explain the definition and meaning
of the SLNAE to non-technical audiences (e.g. stakeholders) on multiple occasions. The term
"Self-Learning" is a technical concept related to AI and ML algorithms involved in its
development, which can be difficult to understand and may generate confusion. Additionally,
the acronym SLNAE and the full name are not easy to pronounce. Therefore, it was decided
with the NXG consortium that a new name was needed.

WP4 led the initiative to define a new name that would be self-explanatory and avoid technical
jargon, while incorporating Nexogenesis-related concepts such as "policy assessment" or
"impact". Several options were proposed under the cocreation framework and put to a vote, and
eventually, the name "Nexogenesis - Nexus Policy Assessment Tool (NEPAT)" was selected
as the best option. The new name is simpler, easier to pronounce, and more reflective of the
tool's and project’s purpose. In order to be consistent with the GA and other official
documentation, both names are valid to refer to the SLNAE.

Thus, the SLNAE tool is referred to as either SLNAE or NEPAT indiscriminately.

1.4. Document structure

The document is structured as follows: Section 2 describes the requirements for the Self-
Learning Nexus Engine implementation. Section 3 briefly reviews the state of the art in multi-
objective optimization and multi-objective reinforcement learning within the nexus domain,
highlighting the advantages of using reinforcement learning in the NXG DSS. Section 4
establishes the foundational knowledge and mathematical formulation in the multi-objective
optimization domain and introduces the selected MORL algorithms. Section 5 presents the
technical design of the NXG decision-making problem and its formalization. Section 6
showcases the initial results of these implementations. Finally, Section 7 demonstrates the
current integration of the Self-Learning Nexus Engine into the NEPAT UI, and Section 8
concludes with the findings and outlines the next steps.

D4.4 Core module of the self-learning nexus engine

12 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

2. Requirements for the
development of the self-learning
nexus engine

In order to develop the NEPAT’s self-learning nexus engine and DSS (step 3 in Figure 2 -
Right), the key following components (Figure 2 - Left) have been previously developed (steps
1 and 2), by other technical WPs, through the co-creation framework (Figure 2 - Right) for
Nexus Policy packages identification:

- Policies
- Nexus Indicators
- Nexus Policy Goals, years and targets
- System Dynamics Models (SDM)s

All these components have been provided by each of the five NXG CSs and have been
integrated into the NXG Simulation Policy Framework (see deliverable D4.3 Simulation Policy
Framework). The aim of the DSS is to identify which policy combinations (i.e., policy
packages) are suitable for achieving the goals' targets. This objective is further explained and
technically formalized later in this document. To measure the impact of each policy package,
an SDM is required. Policies have been implemented in the SDMs, so their impact and trade-
offs can be quantitatively measured using the Nexus indicators, which are also implemented in
the SDMs. A Nexus Goal is linked to one of these indicators, making it measurable.

All these components are available in the Nexogenesis Internal Data Repository or Data Lake
(see D4.2 Data Lake for data sharing). WP4 collects all these resources and uses them to
develop the NEPAT.

WP1 & SHs

WP2 WP4

Nexus policies

Nexus indicators

WP3Reference pathway
simulations

WP5 & CSs

CSs metadata

CSs translations

SDMs and
validation data

Nexus Policy Goals and Policy Targets

WP5 & CSs

Figure 2. Left: NXG cross-WP data pipelines in the Internal Data Repository. Right: NXG co-creation framework for Nexus Policy packages
identification. Source: D4.1

Definition of Nexus Policies and
Targets

(WP1, WP5, CSs & SHs)

Integration of Nexus Policies
and Indicators into

Complexity Science tools
(WP2 & WP3)

Identification of optimal
Nexus Policy packages

(WP4)

Evaluation of proposed
policy packages

(WP1, WP5, CSs & SHs)

1

2

3

4

D4.4 Core module of the self-learning nexus engine

13 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

2.1. Policies

Each CS has proposed an arbitrary number of policies, based on their interest and goals, and
the final analysis they want to carry out. Table 1 summarizes the most relevant information,
from a decision-making multi-objective point of view, associated with the available policies, as
how many of them have been proposed, how many have been finally implemented or its type,
among other information.

Table 1. NEPAT available policies

CS N. of
regions

N. of proposed
policies

N. of proposed policies
at region level

N. of implemented
policies

Incompatible
policies

Type of policies
(Fixed/Dynamic)

Nestos 2+1 10 5 12 No F
Lielupe 2+1 6 5 24 Yes F

Jiu 1 7 - 18 Yes F
Adige 1 12 - 12 No F

Inkomati 1 11 - 11 No F/D

Given that some CS are transboundary, there are further considerations regarding policies,
because the countries involved in each CS may have/select different policies, applying only to
their subregion. Hence, there are two CSs (Nestos and Lielupe) that have split their
implementation and offer sub-regions, or sub-basins, in their SDMs. In Lielupe, the regions of
Latvia and Lithuania have been separately considered as the system sub-regions. In Nestos,
although there are 14 sub-basins identified in the SDMs, policies can only be applied to the
sub-regions of Bulgaria or Greece. In these cases, we consider there to be three regions: two
sub-regions plus the case study as a whole. Therefore, some policies can be applied at a regional
level, allowing decision-making and trade-off analysis at a spatial scale as well.

In some cases, CSs have proposed policies that can be modulated (Figure 3). For example,
Policy P5 in the Lielupe CS, targets the reduction of Greenhouse Gas (GHG) emissions. This
policy affects the fraction of grasslands to renewables parameter in the SDMs, and it is
implemented as a range between 0 and 1, or as a percentage. Initially, we discretize this range
into three values: 0.33, 0.66, and 1, resulting in three additional policies. Thus, technically
speaking, there may be more implemented policies than those originally proposed. Later, this
discretization can be modified based on SHs’ feedback. Continuing with this example, these
additional policies cannot be applied simultaneously because they modulate the same parameter
and correspond to the same real policy. We represent this restriction by marking them as
incompatible policies.

D4.4 Core module of the self-learning nexus engine

14 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

Figure 3. NEPAT UI. Example of Policy modulation

In other cases, like the Nestos CS, there were some policies which were described as appliable
to the whole basin, while being implemented in the SDM as two variables (one for each region).
In these cases, we split the policy into one for each region.

Finally, there are several ways to classify policies, such as by the direct nexus sector affected,
the indirect sectors, or the way the policies function. Here, we classify the proposed policies
based on whether they can be applied at any custom time between 2015 and 2050 or not. In the
former case, we mark them as ‘Dynamic policies’, enabling decision-making and trade-off
analysis at a temporal scale, and in the latter case as ‘Fixed policies’.

Additional information about policies, policy integration, and the policy simulation framework
can be found in D4.3 Simulation Policy Framework.

2.2. Policy packages

The number of possible policy combinations (i.e. policy packages), considering both the
number of implemented policies and their compatibility, can be computed approximately. Table
2 provides an overview of these possible policy packages, illustrating the variety of
combinations available based on the given policies. These computations include both valid and
invalid policy packages, since the presented algorithms in section 4.3 don’t have action masking
implemented, meaning all combinations, whether valid or invalid, can be explored by the agents
during the training phase. Hence, these would be the numbers that accurately describe the
magnitude of the problem for each case study.

D4.4 Core module of the self-learning nexus engine

15 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

Table 2. CS possible combinations with fixed policies

CS Policy combinations
Nestos 28,672
Lielupe 218,103,808

Jiu 2,621,440
Adige 28,672

Inkomati 13,312

From all the presented CSs, Inkomati provided SDMs with dynamic policies (Table 1), meaning
that they can be configured to start their application in any set time in the simulation. For this
case, we have computed the combinations for three scenarios, ordered by the granularity of the
policy application time:

• Policy application every 5 years: meaning each policy can be applied in 2015, 2020,
and so on up to 2050, providing 7 possible years to choose from.

• Policy application yearly: each policy can be applied in any of the 35 years of the
simulation.

• Policy application monthly: each policy can be applied in any of the 420 months of the
simulation.

Table 3. Inkomati combinations with dynamic policies

Scenario Policy combinations
Policy application every 5 years 5.97E+24

Policy application yearly 1.52E+118
Policy application monthly 1.32E+1394

Table 3 shows the number of combinations for each of the considered scenarios. Given the size
and complexity of these combination counts, tabular methods are impractical due to their
inability to scale to these magnitudes. Therefore, we will employ Deep Reinforcement Learning
(Deep RL) algorithms, which are better suited for handling large-scale problems. Although the
second and third scenarios are highly detailed and case-specific, possibly with no real nexus
application, they exemplify a significant level of complexity. Therefore, they can effectively
highlight and demonstrate the advantages of the methodology introduced in the NXG project,
particularly in this deliverable.

2.3. Goals

Each CS has proposed an arbitrary number of goals as well, based on its interest and objectives,
and the final analysis they want to carry out. Table 4 summarizes the most relevant information,
from a decision-making multi-objective point of view, associated with the available goals, as
how many of them have been proposed or how many have been finally implemented, among
other information.

D4.4 Core module of the self-learning nexus engine

16 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

Table 4. NEPAT available goals

CS N. of proposed
goals

N. of proposed goals
at region level

N. implemented
goals

N. of goals affected by
stochastic variables

Nestos 5 5 30 -
Lielupe 4 2 5 1

Jiu 7 - 9 0
Adige 3 - 3 1

Inkomati 14 - 14 9

Similarly to the policies: i) goals can also be set at the sub-region level, and ii) there may be
more implemented goals than originally proposed. For example, Goal G1 in the Jiu CS aims
for an 87% reduction in GHG emissions by 2030 and a 97% reduction by 2050. Two additional
goals have been implemented, each corresponding to one of these pairs of years and targets.

Finally, it is important to understand whether the proposed goals are influenced by the
underlying data stochasticity implemented in the SDMs for proper consideration.

Additional information about goals, goals integration, and the policy simulation framework can
be found in D4.3 Simulation Policy Framework.

2.3.1. Goal targets and years

Goals are defined as a three-tuple structure. First, the SDM indicator linked to the goal, which
must be used to measure its performance and achievement. Second, the target value (e.g. an
absolute amount, a percentage) is used as a threshold to evaluate the achievement of the
corresponding goal. And third, a specific year between 2015 and 2050 when the goal
achievement must be evaluated.

Figure 4, NEPAT UI goal attributes view

For example, in the Inkomati CS, Goal 4 is defined by the indicator "Domestic water
withdrawal," with a target value of 15% to be achieved by a specified year. Figure 4 illustrates
how this goal is represented in the NEPAT UI.

D4.4 Core module of the self-learning nexus engine

17 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

3. A nexus multi-objective
approach

Multi-objective optimization (MOO), also known as multi-criteria or multi-attribute
optimization, deals with problems involving more than one objective function to be optimized
simultaneously. These problems are ubiquitous in engineering, economics, logistics, and other
fields where trade-offs between conflicting objectives need to be made, such as the nexus.

MOO is an “old” research area, dating back to early 1980s [1] or before. Classical methods in
MOO include the weighted sum method [2], epsilon-constraint method [3], and goal
programming [4] Although they are simple, they also present some limitations. Metaheuristic
approaches are used to solve MMO problems as well, they include Particle Swarm Optimization
(PSO)[5], Ant Colony Optimization (ACO)[6], and Simulated Annealing (SA)[7]. Specifically,
evolutionary algorithms (EAs) have become popular in MOO due to their ability to handle
complex, non-linear, and multi-modal objective spaces. Notable EAs include genetic
algorithms (GA)[8], the Non-dominated Sorting Genetic Algorithm II (NSGA-II)[9], and the
Strength Pareto Evolutionary Algorithm 2 (SPEA2)[10]. Finally, extended algorithms that
combine the strengths of different optimization techniques have also produced interesting
results, such as the MOEA/D (Multi-Objective Evolutionary Algorithm based on
Decomposition)[11]. A detailed review of the State of the Art in these areas can be found in
[12].

Recent studies have increasingly applied multi-objective solutions to the nexus approach,
recognizing the need to address the interconnected challenges of resource management. [13]
presents a decision support framework that integrates water and power system models to
address multiple objectives in hydropower development. It evaluates different scenarios
focusing on minimizing power deficits, supporting irrigation for food self-sufficiency, reducing
flood risks, maintaining environmental flows, and maximizing power exports. It uses a multi-
objective optimization algorithm based on the epsilon-constraint method. In [14], they utilize a
multi-objective approach to optimize the Water-Energy-Food (WEF) nexus by integrating
short- and long-term reservoir operations with irrigation ponds, significantly improving
hydropower output, water supply, and food production. The NSGA-II algorithm is employed
for short-term optimization, effectively balancing hydropower generation and reservoir storage
during typhoon seasons.

Also in the WEF nexus, [15] developed a multi-objective modelling approach to optimize
operations in irrigated agriculture. Although the objective function focuses solely on
maximizing the total net economic benefits and minimizing the environmental impacts of food
production, dual uncertainty of water availability is addressed. In this line, [16] presents a multi-
objective genetic algorithm model to balance sustainable agricultural development goals,
integrating social variables with the WEF nexus index. It aims to reduce water and energy use,

D4.4 Core module of the self-learning nexus engine

18 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

lower environmental impacts, and improve farmers' social status. The study highlights that
sustainable cultivation patterns depend on socio-economic conditions and policy, offering a
decision-making tool for policymakers to achieve sustainable agriculture. Recently, addressing
the inefficiencies of traditional MOEAs in handling more than three objectives and numerous
decision variables, [17] explores the application of Large-Scale Many-Objective Optimization
Evolutionary Algorithms (LSMaOEAs) to the WEF nexus. Finally, [18] develops a
comprehensive nexus model to manage resources efficiently without compromising any sector.
The multi-objective model evaluates resource consumption and allocation across different
scenarios, where pareto analysis reveals trade-offs between sectors, highlighting how priorities
impact interactions.

As it is highlighted in some of the previous research, challenges in MOO include scalability
(handling high-dimensional objective spaces and large decision variable), uncertainty and
robustness, dynamic and interactive optimization and computational efficiency (e.g. to handle
real-time applications and large-scale problems).

The objective of Task T4.4 Reinforcement Learning engine is to develop a flexible, real-time,
and user-friendly decision support system (DSS) accessible to the general public. Classical
optimization algorithms, such as metaheuristic approaches and genetic algorithms, require
significant time and computational resources to provide an answer each time it is requested
(i.e., each time a user presses the 'Give me advice' button in the NEPAT UI). This presents two
main issues. First, a reduced user experience. NEPAT’s users would have to wait a considerable
amount of time to receive policy-package recommendations, resulting in poor interaction and a
negative experience with the tool. Second, an increased operational cost. To moderate the first
issue and reduce computational time, we could include additional computational resources.
However, this approach would lead to increased operational expenses.

In order to mitigate these issues and additional key algorithmic limitations, we propose a hybrid
approach that combines multi-objective (MO) optimization with Machine Learning (ML)
methodologies, specifically from the Reinforcement Learning (RL) domain. Reinforcement
learning is a type of ML where an agent learns to make decisions by performing actions in an
environment to maximize cumulative rewards [19]. Through trial and error, the agent uses
feedback from its actions to improve its performance over time (Figure 5).

Figure 5. Reinforcement Learning agent-environment interaction flow

D4.4 Core module of the self-learning nexus engine

19 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

As a result, Multi-Objective Reinforcement Learning (MORL) offers further significant
advantages that may be considered as well.

Unlike classical methods, which often require explicit, predefined trade-offs between
objectives, MORL can learn and adapt to these trade-offs dynamically through interactions with
the environment. This adaptability makes MORL more flexible and robust, particularly in
complex and dynamic environments. For instance, MORL can explore the solution space more
efficiently, often leading to the discovery of more optimal and diverse set of solutions (Pareto
fronts) than traditional methods [12], [20].

Additionally, MORL can handle complex, high-dimensional spaces and stochastic
environments more effectively, leveraging the power of Deep Learning (DL) and other ML
techniques to generalize well across a wide range of scenarios and adapt to changing conditions
without the need for retraining from scratch, which is a limitation in many classical algorithms
[21].

Finally, after the training session, MORL agents can provide solutions in near real-time, making
them suitable for real-time DSSs.

This makes (Deep)-MORL a powerful tool for solving real-world multi-objective problems
where classical algorithms may fall short or may present other disadvantages (e.g. the
computational time and resources requirements).

Recently, RL and DRL approaches have been utilized in the nexus domain to face the decision-
making problem. [22] proposes a novel computational framework incorporating "algorithmic
resilience thinking" to develop adaptive and robust systems, framed as a RL problem using
Markov Decision Processes (MDP). In the same study, a case study is presented that focuses
on weather volatility and its impact on agriculture, demonstrating the framework's ability to
track and mitigate risks, thereby enhancing the resilience and operational effectiveness of
integrated resource systems against disruptions and global supply chain stresses. In [23], the
decision-making problem within the Food-Energy-Water nexus is modeled as a multi-agent
system in a mixed competitive and cooperative environment using a Markov game perspective.
The authors propose a fingerprint networked reinforcement learning (FNRL) framework to
facilitate collective learning in the multi agent system, integrating a neural network to extract
fingerprint information from historical data. Numerical simulations for an urban WEF nexus
demonstrate that the FNRL framework effectively guides agents towards optimal decisions in
a dynamic environment.

Multi-objective (deep) reinforcement learning, however, has not been extensively explored as
a solution for the multi-objective decision-making problem in the nexus, and few studies can
be found. An initial approach to the nexus thinking can be found in [24], where objectives such
as energy generation, ecological protection and water supply are considered. The paper
introduces a Deep Reinforcement Learning (DRL) approach for optimizing multi-objective
operations of multiple hydropower reservoirs. They demonstrate significant improvements over

D4.4 Core module of the self-learning nexus engine

20 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

existing methods, including an increase in electricity generation and a reduction in annual flow
deviation.

D4.4 Core module of the self-learning nexus engine

21 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

4. Multi-objective RL: problem
setting, taxonomy and
algorithms

This section first introduces the multi-objective problem setting, extending the single-objective
Markov Decision Process (MDP) formalization. Second it presents the taxonomy utilized
throughout the rest of the document, and final, it describes the MORL and DMORL algorithms
implemented to solve the proposed nexus decision-making problem.

A deep introduction to MDPs and RL can be found in [Sutton]. The following sub-sections are
based on [25] and [20].

4.1. Multi-objective problem setting

Extending the MDP formalization presented in D4.1 section 6.2.5.1 MDP formalization, we
introduce the Multi-Objective Markov Decision Process (MOMDP) as the proposed
mechanism to support decision-making in the nexus.

A MOMDP is represented by the tuple	〈𝑆, 𝐴, 𝑇, 𝛾, 𝜇, 𝑅〉, where:

• 𝑆 is the state space
• 𝐴 is the action space
• 𝑇 ∶ 𝑆	 × 	𝐴	 × 	𝑆 → [0,1] is a probabilistic transition function
• 𝛾 ∈ [0, 1) is a discount factor
• 𝜇 ∶ 𝑆 → [0,1] is a probability distribution over initial states
• 𝑅 ∶ 𝑆	 × 	𝐴	 × 	𝑆 → 	ℝ! is a vector-valued reward function, specifying the immediate

reward for each of the considered 𝑑 ≥ 2 objectives

The key distinction between a single-objective MDP and MOMDP lies in the vector-valued
reward function. In a MOMDP, this function provides a numerical feedback signal for each

= (𝑅! , 𝑅" , … , 𝑅#)$

Figure 6. Multi-Objective Reinforcement Learning agent-environment interaction flow

D4.4 Core module of the self-learning nexus engine

22 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

objective under consideration, resulting in a reward vector whose length matches the number
of objectives (Figure 6).
As a result, the value function of a state 𝑠 (i.e. the expected return G(s)	when starting in 𝑠 and
following 𝜋 thereafter) is also vector-valued, 𝑉"(𝑠) ∈ ℝ!.

𝑉"(𝑠) = 𝔼 @A𝛾#𝑟$%#%&|𝜋, 𝑠$ = 𝑠
'

#()

D

In single-objective settings, the value functions provide a complete ordering over the policy
space. This means that for any two policies, 𝜋 and 𝜋*, 𝑉"(𝑠)	 will either be greater than, equal
to, or less than 𝑉"*(𝑠). Consequently, finding the optimal policy 𝜋∗ is equivalent to maximizing
the expected cumulative discounted reward. For a MOMDP this is not necessarily the case.

If we have access to a utility function 𝑢:ℝ! → 	ℝ	that maps the multi-objective value of a
policy to a scalar value 𝑉," = 𝑢(𝑉"), it would provide a total ordering over policies, effectively
reducing the MOMDP to a single-objective decision-making problem. However, this approach
is not always possible, feasible, or desirable, as discussed in [20]. Consequently, when dealing
with multi-objective value functions, we might encounter situations where 𝑉-" > 𝑉-"* for
objective 𝑖, while 𝑉." < 𝑉."* for objective 𝑗.

As a consequence, in MOMDPs, value functions only provide a partial ordering over the policy
space. Therefore, determining the optimal policy is not possible without additional information
on how to consider or prioritize the objectives to order the policies.

4.2. Multi-objective taxonomy

This section introduces various concepts from the multi-objective optimization domain that will
be utilized later in the document. Building on the previously presented term, the utility function,
two extensions are defined. These extensions form the basis for the different types of solution
sets that can be derived.

4.2.1. A Monotonically increasing utility function

A monotonically increasing utility function, 𝑢, follows the rule that if a policy enhances one or
more of its objectives without diminishing any others, the scalarized value will also increase.

(∀𝑖 ∶ 	 𝑉-" ≥ 𝑉-"*) ∧ 	(∃𝑖 ∶ 	 𝑉-" > 𝑉-"*)
⬚
⇒ 𝑢(𝑉") ≥ 𝑢(𝑉"*)

A monotonically increasing utility function can represent both linear (with nonzero positive
weights) and non-linear user preferences. Monotonicity in the utility function is a minimal

D4.4 Core module of the self-learning nexus engine

23 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

assumption for MORL, as it aligns with the fundamental definition of an objective: we always
seek to maximize value in any of the objectives.

4.2.2. A linear utility function

A linear utility function calculates the inner product of a weight vector 𝑤 and a value vector
𝑉".

𝑢(𝑉") = 𝑤0𝑉"

Each element of the weight vector 𝑤 specifies how much one unit of value for the corresponding
objective contributes to the scalarized value. The elements of the weight vector are all positive
real numbers and are constrained to sum to 1.

4.2.3. Solution sets

In single-objective RL problems, there exists a unique optimal value 𝑉∗, and there can be
multiple optimal policies 𝜋∗ that all achieve this value. The goal in single-objective RL is
typically to learn an optimal policy. However, in MOO cases, without any additional
information about the user’s utility, there can be multiple potentially optimal value vectors 𝑉.
Therefore, it is necessary to consider different sets of potentially optimal value vectors and
policies.

The selection of the solution set is crucial for the efficiency of algorithms used in solving MO
problems, as it requires computing all the policies within these sets.

4.2.3.1. The undominated set

The undominated set 𝑈(Π) consists of the subset of all possible policies Π and their associated
value vectors for which there exists a potential utility function 𝑢 that achieves the maximum
scalarized value.

𝑈(Π) = {𝜋 ∈ Π	|	∃𝑢, ∀𝜋* ∈ Π ∶ 	 𝑢(𝑉") ≥ 𝑢(𝑉"*)}

However, the undominated set might include redundant policies. These are policies that are
optimal for a particular utility function, but there are other policies that are also optimal for the
same utility function. In such cases, it is unnecessary to keep all these policies to maintain
optimal utility.

4.2.3.2. The coverage set

D4.4 Core module of the self-learning nexus engine

24 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

A set 𝐶𝑆(Π) is considered a coverage set if it meets two conditions: it must be a subset of 𝑈(Π),
and, for every 𝑢 in, it includes a policy with the highest scalarized value.

𝐶𝑆(Π) ⊆ 𝑈(Π)	∧ 	(∀𝑢, ∃𝜋 ∈ 	𝐶𝑆(Π), ∀𝜋* ∈ Π ∶ 	 𝑢(𝑉") ≥ 𝑢(𝑉"*))

4.2.3.3. The Pareto Front

In those cases where the utility function 𝑢 is any monotonically increasing function, then the
Pareto Front (PF) is the undominated set 𝑈(Π).

𝑃𝐹(Π) = X𝜋 ∈ Π	Y	∄𝜋* ∈ Π ∶ 	𝑉"* ≻1 𝑉"\

where ≻1 is the Pareto dominance relation

𝑉" ≻1 𝑉"
! ⬚
⇔ ^∀𝑖 ∶ 	𝑉-" ≥ 𝑉-"

!_ ∧ (∃𝑖 ∶ 	 𝑉-" > 𝑉-"
!)

In other words, the Pareto front is constituted by all the policies such that there is no other
policy with value that is equal of better in all the objectives. A collection of policies whose
value functions align with the PF is known as a Pareto Coverage Set (PCS).

4.2.3.4. The convex hull

The convex hull (CH) consists of the subset of Π for which there exists a weight vector 𝑤 (for
a linear utility function) such that the linearly scalarized value is maximized. It is the
undominated set for linear utility functions.

𝐶𝐻(Π) = {π ∈ Π	|	∃𝑤, ∀π* ∈ Π:𝑤0𝑉2 ≥ 𝑤0𝑉2!}

4.2.3.5. The convex coverage set

A set CCS(Π) is a convex coverage set if it is a subset of CH(Π) and if, for every weight vector,
it includes a policy whose linearly scalarized value is maximized.

𝐶𝐶𝑆(Π) ⊆ CH(Π) ∧ ^∀w, ∃π ∈ CCS(Π), ∀π* ∈ Π:w3V2 ≥ w3𝑉2!_

4.3. Multi-objective Reinforcement
learning algorithms

D4.4 Core module of the self-learning nexus engine

25 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

Multi-objective reinforcement learning encompasses a diverse array of methodologies, from
bandit problems to deep reinforcement learning architectures. For a thorough review see [12].
A prevalent and widely adopted approach in MORL is extending established single-objective
model-free value-based methods like Q-learning [26] to handle multiple objectives
simultaneously.

Some examples of this practice include MO Q-Learning, MPMO Q-Learning [27], Pareto Q-
Learning [25] and MPQ-learning [28]. These methods are restricted to tabular representations
of Q-values, limiting their applicability to more complex problems. For these types of problems,
some DRL algorithms have been adapted to multiple objectives. Most of these methods extend
the single objective DQN architecture and some examples are Pareto DQN [29] and Envelope
Q-learning [30].

There are also some alternatives to the seen value-based approaches, adopting policy search
algorithms. Some examples are the Expected Utility Policy Gradient (EUPG) implementation
by Roijers et al. [31], the multi-objective categorical Actor-Critic (MOCAC) by Reymond et
al. [32] or the multi-objective extension of PPO by Xu et al [33].

For the Self-Learning Nexus Engine, we have considered the tabular method Pareto Q-learning
and the DRL algorithm Envelope Q-learning implementations from MORL-Baselines [34]
Python library. Considering the number of goals we have (Table 4), we have focused on the
algorithms that do not impose explicit limitations on the number of objectives. Finally, we have
adapted the available implementations to match the NXG case and its characteristics.

The usage of Pareto Q-learning will allow us to explicitly capture Pareto-optimal solutions,
allowing a thorough modelling of the trade-offs between different objectives. Also, since its
tabular nature, it will allow us to have a more variate range of recommendations. On the other
hand, Envelope Q-learning focuses on efficiently representing the envelope of the Pareto front,
simplifying the computational complexity associated with maintaining multiple solutions. This
method scales effectively to larger state-action spaces, being the best option for solving the
bigger problems presented in section 2.2.

4.3.1. Pareto Q-learning

Pareto Q-learning, or PQL [25], is an on-line Temporal Difference-based [19] multi-objective
learning algorithm proposed as an extension of Q-learning to multi-objective problems. The
algorithm is made for only episodic problems, and works model-free, learning both stationary
and non-stationary deterministic policies.

Similar to Q-learning, PQL is a method where an agent interacts with its environment to learn
the optimal expected long-term rewards of its actions (Algorithm 1). For each state-action pair
(𝑠, 𝑎) sets of vectors, 𝑄(𝑠, 𝑎) are learned. Each vector 𝑞	 ∈ 𝑄(𝑠, 𝑎) represents the expected
vector reward when following a particular Pareto-optimal policy after taking action 𝑎 in state

D4.4 Core module of the self-learning nexus engine

26 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

𝑠. Additionally, the set 𝑉(𝑠)) contains all the Pareto-optimal vector estimates for all actions
available in state 𝑠). These sets are the multi-objective equivalents of the scalar 𝑄 and 𝑉 sets
used in traditional Q-Learning.

In PQL, the sets of vectors 𝑄(𝑠, 𝑎) are not learnt directly, instead, they are constructed using
two separate components: the immediate reward and future reward. ℜk(𝑠, 𝑎) denotes the average
observed immediate reward vector of (𝑠, 𝑎) and 𝑁𝐷$(𝑠, 𝑎) the set of non-domunated vectors
in the next state of 𝑠 that is reached through action 𝑎 at timestep 𝑡. Each set of vectors 𝑄(𝑠, 𝑎)
𝑄o45$(𝑠, 𝑎) can be calculated as a vector-sum over the average immediate reward vector and the
et of discounted Pareto dominating future rewards:

𝑄o45$(𝑠, 𝑎) 	⟵	ℜk(𝑠, 𝑎)	⨁	𝛾𝑁𝐷$(𝑠, 𝑎)

This approach addresses the issue of lacking correspondence between vectors in different sets
(as explained in detail in []).

During training, PQL employs an 𝜖-greedy exploration strategy to balance between exploration
and exploitation phases. For the exploitation, the algorithm presents three mechanisms that
allow action selection based on the content of the sets 𝑄o45$(𝑠, 𝑎):

• Hypervolume: the volume of the objective space covered by the 𝑄o45$ of each action. It
is the only quality indicator to be strictly monotonic with the Pareto dominance relation.

• Cardinality: number of Pareto dominating vectors in the 𝑄o45$ of each action. It is a
heuristic that can guide the search process towards actions that dominate the others
locally within a state.

• Pareto set evaluation: metric similar to the cardinality. Instead of computing the number
of non-dominated elements in the 𝑄o45$ of each action, it randomly samples from all the
actions that have a non-dominated vector across every other action 𝑎′.

Once the algorithm is trained, in traditional Q-learning, the learned policy can be easily tracked
by using the argmax operator over all actions. However, in the case of PQL, many optimal
policies are available in each state, so there is the possibility of tracking any of the vectors in
𝑄o45$(𝑠, 𝑎) for all actions given a state 𝑠 . The process works as follows: given a target vector q
to follow, for each action 𝑎	𝜖	𝐴, we retrieve both the averaged immediate reward ℜk(𝑠, 𝑎) and
𝑁𝐷$(𝑠, 𝑎), which is discounted. With both values we compute the 𝑄o45$(𝑠, 𝑎). If any of the
vectors in 𝑄o45$(𝑠, 𝑎) is equal to q, we select the corresponding action and step into the next
state. The target vector q is then set to the corresponding vector of 𝑁𝐷$(𝑠, 𝑎) and the process
continues until a terminal state is reached.

PQL is an algorithm that effectively balances multiple objectives by maintaining 𝑄o45$’s for each
state-action pair, approximating the Pareto front for optimal policy discovery. However, many
challenges arise when using this algorithm, including an increased computational complexity

Algorithm 1. Pareto Q-learning algorithm. Source [25]

D4.4 Core module of the self-learning nexus engine

27 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

due to managing multiple 𝑄o45$’s and difficulties in scaling to large state and action spaces and
number of objectives.

4.3.2. Envelope Q-learning

Contrary to PQL, Envelope Q-learning [30] doesn’t compute a set of optimal policies that
encompass the entire space of possible preferences in the domain. Instead, it learns a single
policy network that is optimized over the entire space of preferences in a domain. In this way,
just one network can produce the optimal policy for any user-specified preference.

This algorithm assumes that the utility function will be linear, i.e., that the user-preferences will
be modelled as weighted averages, where the user sets the weight vector. Given this assumption,
the set of optimal policies learnt by the algorithm are the ones from the convex coverage set
(CCS) of the problem.

To obtain the CCS solutions, the algorithm uses double Q-learning with target Q-networks
following [35], [36]. The key differences from standard double Q-learning are in the target
update mechanism and the loss function. In Envelope Q-learning, the target update involves
maintaining an envelope around the Q-values to constrain possible updates, ensuring they
remain within a plausible range. This helps mitigate overestimation and stabilizes learning.
Additionally, the loss function in Envelope Q-learning incorporates a penalty for predictions
that fall outside the envelope, further guiding the Q-values to stay within the predefined bounds.
This combination enhances the robustness of the learning process and improves convergence
to optimal policies.

Once a policy model is obtained in the learning phase (Algorithm 2), the agent can adapt to any
provided preference by simply feeding a weights vector ω (a linear utility function) into the
trained network. This weights vector ω adjusts the importance of the different objectives
according to the user’s preferences. Without a need for retraining, the agent can quickly adapt
to changing conditions or preferences in near real-time, ensuring an optimal policy across a
variety of scenarios.

In many evaluations, Envelope Q-learning proves to be an algorithm that can scale to high
dimensional state and action spaces, and work with many objectives. Also, it is sample-efficient
and seems capable of adapting to different preferences effectively, showing effective
generalization and policy adaptation. The added complexity of maintaining and updating the
envelope can increase computational overhead and may require careful tuning of
hyperparameters to balance the size and adaptation of the envelope.

D4.4 Core module of the self-learning nexus engine

28 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

Algorithm 2. Envelope Q-learning algorithm. Source [30]

D4.4 Core module of the self-learning nexus engine

29 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

5. The Nexogenesis decision-
making problem formalization

[12] and [20] propose six scenarios where a multi-objective approach is required. The NXG
decision-making case falls into the decision support scenario, where the user’s preferences are
unknown or difficult to specify.

Figure 7. Decision support scenario diagram, extracted from [X]

As seen in Figure 7, in this scenario, since a priori we don’t know the user’s preferences, we
compute a solution set with the Pareto front solutions to be able to respond with an optimal
solution regardless of the preferences. Once the user wants a recommendation, he provides its
preferences and with those set, the selection phase is run, obtaining the best solution according
to the set preferences.

The MOMDP in the NXG decision-making problem is presented as an episodic case where,
given an initial situation, the agent must provide the undominated set solutions (further details
provided in section 5.1). Two problem variants are proposed, one considering deterministic
environments (i.e. deterministic SDMs), and the other considering stochastic environments. In
the first case, the average reference scenario is used. In the second case, available data
stochasticity in SDMs is not aggregated, thus a more challenging situation is presented. Further
details on how these environments are constructed can be found in D4.3.

Each project CS represents a unique optimization problem. Additionally, there are three further
layers of complexity. First, each CS includes a set of reference scenarios (RCP-SSP
combinations), each depicting different potential future conditions. Second, the complexity
models implemented by WP3 incorporate randomness in the input data, allowing for both
deterministic and stochastic execution modes. Finally, one of the CSs (Inkomati) introduces an
additional decision-making dimension: the year when a policy is applied, which we call the
‘dynamic policies’ mode, in contrast to the ‘static mode’ with fixed policies. All these options
are available through different implementations of the CS’ System Dynamic Models (SDMs).
Consequently, an agent will be trained for every combination of CS, reference scenario,
randomness execution mode, and, for the Inkomati CS, the policy mode.

The NXG decision-making problem formalization is described below. We start discussing the
details of the proposed utility functions space, and later discuss about the deterministic and
stochastic cases.

D4.4 Core module of the self-learning nexus engine

30 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

5.1. Utility functions set by the
stakeholder

As introduced in previous sections, the key of MORL is allowing the users to set their
preferences and return the optimal solutions according to their settings. To do that, we studied
an adequate utility function u that fits the SHs requirements while simplifies enough the
solution set we have to deal with.

𝑢:ℝ! 	⟶ ℝ

In the proposed nexus decision-making scenario, we consider that all the plausible functions in
the utility function set are monotonically increasing, meaning that if a policy increases for one
or more of its objectives without decreasing any of the objectives, the scalarised value also
increases. Furthermore, available utility functions are also linear, thus the weighted sum for
each value of the objective is computed.

Therefore, in our solution, the user will be able to set a weight for each objective, which will
be used to compute a scalar value and filter the solutions of the pareto front to get only the ones
that are the best according to the user’s preferences.

Let's consider an example. Suppose we have three objectives:

§ O1 - Water Availability: Ensuring a sustainable water supply, measured in million cubic
meters per year.

§ O2 - Energy Efficiency: Optimizing energy consumption, measured in gigawatt-hours
(GWh) saved per year.

§ O3 - Food Production: Maximizing food output, measured in million tons per year.

The utility function is a weighted sum of the three objectives, with weights assigned based on
their relative importance, selected by the stakeholders. For instance, suppose the stakeholders
assign the following weights:

§ 𝑤& = 0.5 Water Availability
§ 𝑤6 = 0.3 Energy Efficiency
§ 𝑤7 = 0.2 Food Production

The utility function 𝑢(𝑝) for a policy 𝑝 can be expressed as:

𝑢(𝑝) = 0.5	 ×	𝑂&(𝑝) + 	0.3	 ×	𝑂6(𝑝) + 	0.2	 ×	𝑂7(𝑝)

Now, consider three different policies 𝑝&, 𝑝6 and 𝑝7	with the following impacts and objective
values:

§ Policy 𝑝&:
o Water Availability 𝑂&(𝑝&) = 120 million cubic meters/year

D4.4 Core module of the self-learning nexus engine

31 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

o Energy Efficiency 𝑂6(𝑝&) = 200 GWh/year
o Food Production 𝑂7(𝑝&) = 50 million tons/year

§ Policy 𝑝6:
o Water Availability 𝑂&(𝑝6) = 100 million cubic meters/year
o Energy Efficiency 𝑂6(𝑝6) = 250 GWh/year
o Food Production 𝑂7(𝑝6) = 60 million tons/year

§ Policy 𝑝7:
o Water Availability 𝑂&(𝑝7) = 110 million cubic meters/year
o Energy Efficiency 𝑂6(𝑝7) = 180 GWh/year
o Food Production 𝑂7(𝑝7) = 55 million tons/year

Using the utility function, we can calculate the utility for each policy.

§ Policy 𝑝&:
𝑢(𝑝&) = 0.5	 × 	120 + 	0.3	 × 	200 + 	0.2	 × 	50 = 130

§ Policy 𝑝6:
𝑢(𝑝6) = 0.5	 × 	100 + 	0.3	 × 	250 + 	0.2	 × 	30 = 137

§ Policy 𝑝7:
𝑢(𝑝&) = 0.5	 × 	110 + 	0.3	 × 	180 + 	0.2	 × 	55 = 120

Comparing the utility values of the policies, we find that 𝑢(𝑝6) = 137 is the highest. Therefore,
policy 𝑝6 is the preferred policy according to the given utility function, as it maximizes the
overall utility by effectively balancing water availability, energy efficiency, and food
production.

5.2. The deterministic case

In this section, the decisions made for the design of the MOMDP in the deterministic case are
described.

5.2.1. The state space

In a RL environment based on a fully observable MDP, states are typically defined to capture
all relevant information about the current situation the agent is in. Based on the Markov property
[Sutton], this information should be sufficient to make decisions about the next action.

We model the state space 𝑆 as an N-binary vector that indicates to the agent which actions have
been selected; in simpler terms, it denotes the current policy package.

Given that the agent learns from the average scenario of the SDM, the results of the application
of a policy package are deterministic, hence the transition function 𝑇(𝑠, 𝑎, 𝑠′) in our problem is
deterministic (𝑇(𝑠, 𝑎, 𝑠′) 	= 	1). Therefore, it is unnecessary to include nexus variables in the

D4.4 Core module of the self-learning nexus engine

32 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

observation. The current policy package alone encapsulates all essential information about the
agent's current context, and is sufficient to distinguish all possible states, since the initial state
𝑠) is always the same (i.e. a deterministic SDM execution with no policies applied).

Depending on the CS to be solved, its dimensions N change. In a CS with fixed policies, the
state 𝑠 will be a binary vector with one component for each implemented policy (see Figure 8-
a). As for case studies with dynamic policies, the state s is defined as a binary matrix with as
many rows as applied policies, and one column per each year of application (Figure 8-b).

Figure 8. Nexogenesis state space

5.2.2. The action space

Regarding the action space 𝐴, the agent’s actions correspond to applying one of the
implemented policies (Table 1). When we refer to implemented policies, we mean the
transformed final versions designed for the self-learning nexus engine. Additionally, an extra
action 𝑎 is considered, which represents not applying any policy. This is for the agent to be able
to choose to stop applying policies and the keep the obtained policy package, thus finishing an
episode.

Similarly to states, the number of actions varies depending on the "type of policies" being
considered. In the static case, an action corresponds to applying a policy, while in the dynamic
case the actions correspond to applying a policy in a specific year. In this latter case, the number
of actions significantly increases, totalling the number of implemented policies multiplied by
the number of years over which they are applied.

D4.4 Core module of the self-learning nexus engine

33 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

5.2.3. The reward function

The reward function 𝑅 is crucial in RL as it guides the agent's behavior by providing feedback
on the desirability of its actions. In this context, the objective is for the agent to identify optimal
policy packages. However, defining this optimality has proven complex, with several
considerations explored:

• Achieving solutions that meet specified goal targets.
• Attaining goal targets while minimizing the number of policies in the package.
• Meeting goal targets while optimizing a specific sector.
• Maximizing goal targets across all sectors.
• Maximizing other nexus indicators.

Since there are numerous possible definitions for an ‘optimal policy package,’ we asked SHs
what type of recommendations they would prefer to receive. The most popular response was
the smallest policy package that achieves the goal targets. This seems a reasonable choice, as
smaller policy packages are easier to execute and implement. However, incorporating
additional constraints, such as economic policy costs or social impact, could provide further
clarity on this issue.

With this definition, we have designed the reward to be a vector with one component for each
CS goal, and a last component indicating the number of policies applied in the policy package.
Specifically, the rewards corresponding to the CS goals are defined as the distance to achieve
the goal. For instance, if a goal requires a 20% increase in a nexus indicator compared to the
baseline, the initial distance to the target would be 20. This distance is computed from the goal
starting month to the end of the simulation in a monthly basis. Following this example, if the
initial year for evaluating the goal is January 2015, knowing that all CSs simulations run from
January 2015 to December 2049, the distance should be computed for the 420 months of the
simulation (35 years * 12 months). Hence, the total difference would be -20 * 420 = -8,400. To
signify that we are 8,400 units away from achieving the target, this reward is expressed as a
negative value.

These distances can range from 0, indicating goal achievement, to any negative values,
influenced by factors such as the goal's starting date and the target percentage. All the goals
should be equally considered by the agent, so there can’t be different value ranges across the
components of the reward. To resolve this issue and avoid having the agent prioritize the
completion one goal over another, we scale these total distances between -100 and 0 using a
MinMax scaler4, where -100 corresponds to the baseline distance and 0 to achieving the goal.
The last component of the reward needs no scaling, as it is just a negative number indicating

4 https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html#sklearn.preprocessing.MinMaxSc
aler

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html#sklearn.preprocessing.MinMaxScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html#sklearn.preprocessing.MinMaxScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html#sklearn.preprocessing.MinMaxScaler

D4.4 Core module of the self-learning nexus engine

34 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

the number of policies applied in the current policy package. This value is negative, so as to
favour smaller policy packages over bigger ones.

To help the agent converge faster, and easily identify the individual effects of his actions, the
reward function has been defined as a dense function, providing feedback at every step of the
agent’s actions. This reward function returns a reward vector with the increment or decrement
in distance/level of achievement with respect to the previous step in an episode. The reward
component indicating the number of policies is also incremental, having a -1 in each step. For
instance, given that the baseline distance is -100 by the number of goals, if in the first step we
apply a policy that improves one goal by 10%, we would get a reward vector with a 10 in the
achievement of that affected vector, and the rest of goal distance values would be zeroes since
no change has been made.

With this incremental reward definition, the total reward will always have a goal achievement
level between a vector of zeros, indicating no achievements beyond the baseline, and a vector
of one hundred by the number of goals, indicating full achievement of all goals in the policy
package. Depending on the behavior of the SDM, there is also the possibility of having a
negative value in the episode total reward, signaling maladaptation where the achieved state is
worse than the baseline.

For a comprehensive global nexus analysis, the proposed goals for some of the CS may be too
sector or policy-specific. In such cases, we study incorporating nexus footprint indicators as
additional objectives. This approach, including these indicators in the reward function, provides
a more holistic perspective, allowing us to consider all trade-offs within the nexus.

5.2.4. Nexus Optimal Solutions

Given the explained problem definition, the self-learning nexus engine will learn through a
repetitive interaction with the environment, the set of Convex Hull solutions. In this case, this
corresponds to the set of solutions/strategies that yield a value vector where each component of
the final reward is at least as good as all other possible solutions, with at least one component
of the vector being strictly superior to the others.

To clarify this concept and understand what type of solutions the algorithms used will consider,
let's illustrate it with an example. Imagine a toy case study where we have three policies and
two CS goals. Given the state space represented by Figure 9, we can see the different states and
the incremental rewards obtained in each step, given by the transition from one state to another.
Although not represented in the diagram for clarity, note that in every state there is the
possibility of choosing the action of not applying any policy, which would return a reward of
[0 0 0] and end the episode.

D4.4 Core module of the self-learning nexus engine

35 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

Figure 9. Multi-objetive nexus problem example

As already mentioned, the optimal set for each state will include vectors resulting from the
implementation of optimal strategies. These vectors will be such that there is no other strategy
yielding a vector that is strictly superior in all components. For example, in the state defined by
“[P1, P2]”, the optimal set includes two vectors: one from applying no policy [0, 0, 0] and
another from applying policy P3, resulting in [100, 150, -3].

From the initial state "[]," most of the possible policy combinations would be considered
optimal strategies as listed in Table X. However, certain strategies are discarded. For example,
[P3] with returns [0 50 -1] is dominated by [P2] with returns [0 100 -1]. Similarly, [P1, P3] with
returns [100 50 -2] is dominated by [P1, P2] with returns [100 100 -2].

Table 5. Multi-objective nexus problem example Convex Hull

Strategy Value vector
 G1 G2 PP size
[] 0 0 0
[P1] 100 0 -1

D4.4 Core module of the self-learning nexus engine

36 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

[P2] 0 100 -1
[P1, P2] 100 100 -2
[P2, P3] 0 100 -2
[P1, P2, P3] 100 150 -3

5.3. Stochastic case

During the previous problem definition phase, only deterministic SDMs were considered, and
no implementation has been made so far to include stochastic elements. In this section, we
discuss the modifications needed to accommodate uncertain results in our problem.

Theoretically, if no changes were made, it would result in dealing with a Partially Observable
Multi-Objective Markov Decision Process (POMOMDP). Since in the stochastic scenario there
are some nexus variables that take random values, having only the state defined in section 5.2.1,
would not provide enough information and the agent wouldn’t be able to distinguish different
situations, or even starting states.

Given the potential complexity added by incorporating stochastic elements, another approach
could involve integrating all pertinent random variables into the state 𝑠. This would enable the
agent to precisely assess its current state. A simplified approach could involve incorporating
only key nexus variables, such as the nexus footprint indicators, to represent the nexus state. In
this case, the added complexity in terms of state definition would be minimized.

However, due to the inherent randomness in SDMs, where variables follow a uniform
distribution, additional analysis is necessary to determine how optimizing the policy package
would function in such volatile scenarios.

We are continuing to work on this point and it will be reported in the next version of the
SLNAE/NEPAT tool..

D4.4 Core module of the self-learning nexus engine

37 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

6. Initial results

Given the problems presented in section 2.2, we applied the proposed mechanisms to the
Lielupe, Jiu and Inkomati CSs with fixed policies using the RCP26-SSP2 scenario and
deterministic SDMs. Additionally, we also ran some initial processes for the Inkomati CS with
dynamic policies every 5 years. We will continue adjusting the framework, training agents and
validating their performance over the coming months.

For the small, fixed policies problems, a three-step procedure was employed to obtain the
Convex hull solutions for each and ensure effective learning.

Firstly, thanks to the feasible size of the state space S, a highly parallelized exhaustive search
approach is run to obtain the episode rewards for each of the valid policy combinations in the
CS. This is used for validation. With these rewards, we employ a function to filter only the
dominant vector rewards. Since all the valid combinations were considered in the filtering, the
result is the Convex hull set from the initial state, which corresponds to the baseline or reference
scenario, i.e., the case where no policies are applied. This front comprehends all the possible
optimal solutions, since all the states in the problem are reachable from the initial state.

After the Convex hull is known, a Pareto Q-learning agent is trained, which directly learns the
Pareto front (i.e. the Convex hull set in or case), and the found solutions are compared with the
results obtained from the exhaustive search.

Finally, an agent with the algorithm Envelope Q-learning undergoes training, to see if we can
learn the optimal solutions using a more scalable and sample efficient algorithm. In this case,
this algorithm doesn’t explicitly learn all the solutions from the Convex Hull as explained in
section 4.3.2. Instead, it trains a unified policy network that is optimized across all possible
preferences within a domain. Therefore, this last approach is evaluated by a set of tests,
involving different setup states and defined priorities to ensure that the solutions provided
actually correspond to the Convex Hull.

For the larger-scale problems like Lielupe with fixed policies, or the dynamic policies problem
solved for Inkomati, where the number of combinations is exceedingly large, it becomes
unfeasible to run an exhaustive search. Due to this reason, for these cases only Pareto Q-
learning and Envelope were run. The subsequent subsections will detail the results obtained for
each of the solved cases.

The training sessions for the Envelope Q-Learning algorithm, which uses Deep Learning as an
approximation function, were run on GPU hardware. The remaining algorithms and approaches
were run on CPUs.

D4.4 Core module of the self-learning nexus engine

38 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

6.1. Jiu

In this problem, as seen in Table 2, there is a total of 2,621,440 combinations. By running an
exhaustive search, a total of 8,000 valid combinations were found and from all these solutions.
From these valid combinations, 5,887 solutions correspond to the Convex hull set for this
problem.

Knowing this, we’ve trained a PQL agent to run one million steps. Although this number of
steps is reduced compared to the total number of combinations, the results show that the agent
makes an intelligent exploration, obtaining 5761 solutions (98%), which is a number of
solutions close to the real Convex Hull, as seen in Figure 10.

Figure 10. Number of dominant solutions during PQL training in Jiu CS

In regard to the Envelope agent, it was also trained during one million steps, and it showed
promising metrics during the training, demonstrating a positive trend with consistently
decreasing loss Figure 11.

Figure 11. Envelope network loss during training in Jiu CS

Num of dominant solutions

Training loss

D4.4 Core module of the self-learning nexus engine

39 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

To evaluate its performance, a set of tests were carefully selected, detailed in Annex I. These
results present the number of solutions provided by the agent that actually are from the Convex
hull set, considering there are 5 tests and each one is repeated three times, one per each of the
chosen weights.

Table 6. Envelope test results in Jiu CS

Test Nº of solutions in the Convex hull
T1 2/3
T2 1/3
T3 2/3
T4 3/3
T5 3/3

As it can be seen in Table 6, considering the number of steps sampled by the agent, most tests
yield optimal solutions except for test 2. While the results are quite promising, longer training
times may be required for the agent to converge and yield optimal results in all tests.

6.2. Inkomati

As mentioned previously, in the case of the Inkomati CS, we’ve focused on solving the problem
for fixed policies, but also trained some agents on the smallest dynamic mode scenario. In the
following sections, we review the results obtained so far.

6.2.1. Fixed policies

For this scenario, the results of the exhaustive search returned a total of 2,048 valid
combinations from the 13,312 possible ones (Table 2). After filtering the non-dominant
solutions, a total of 418 solutions constitute the Convex hull set.

A PQL agent was trained for 100,000 steps in this case, giving a good margin for the agent to
find all the solutions. As seen in Figure 12, in this case also a close number of the Convex hull
solutions were found.

D4.4 Core module of the self-learning nexus engine

40 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

Figure 12. Number of dominant solutions during PQL training in Inkomati CS

Upon examination, it was found that the algorithm had learnt most of the solutions and was
missing 14 vectors in the obtained set of solutions, meaning a 96% of the solutions were found.
Looking at the tendency of the line representing the number of dominant solutions found by the
agent (Figure 12), it seems that the size was still growing and it still needed more steps for it to
converge.

In the case of the Envelope agent, it was trained for 50,000 steps, demonstrating a promising
trend with a steadily decreasing loss (Figure 13).

Figure 13. Envelope network loss during training in Inkomati CS with fixed policies

The results of this training can be seen in Table 7, where we can see the agent’s performance
across the different tests detailed in the Annex I.

Table 7. Envelope test results in Inkomati CS with fixed policies

Test Nº of solutions in the Convex Hull
T1 3/3

Num of dominant solutions

Training loss

D4.4 Core module of the self-learning nexus engine

41 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

T2 0/3
T3 0/3
T4 0/3
T5 0/3

In this case, except for test 1, the results seem to be all suboptimal, indicating that the agent still
needed much more training and may require a revision on the training parameters and
exploration strategies. We are continuing to work on this point.

6.2.2. Dynamic policies

From all the scenarios introduced in Table 3, some trials were made in the scenario with
dynamic policies with 7 application years (every 5 years). Given its size, only Envelope could
be applied to solve this problem since both exhaustive search and Pareto Q-learning can’t scale
for such numbers of possible states.

After running many trials with different hyperparameters, the best results were found in a
training of 500,000 steps yielding the best results in the evaluations along with presenting a
decaying loss (Figure 14).

Figure 14.Envelope network loss during training in Inkomati CS with dynamic policies every 5 years

Given the lack of results from both the exhaustive search and the Pareto Q-learning algorithm
due to the problem's size, we need to consider alternative approaches for tackling and evaluating
the problem. Moving forward, we may employ multi objective genetic algorithms as a
comparative benchmark to assess our agent’s performance. This strategy will allow us to
explore different solution spaces and potentially achieve more efficient and scalable outcomes.

6.3. Lielupe

Training loss

D4.4 Core module of the self-learning nexus engine

42 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

In the Lielupe CS, there’s a total of 218,103,808 possible combinations as seen in Table 2. Like
with the case of Inkomati with dynamic policies, given the scale of this problem it was not
possible running an exhaustive search and obtaining the Convex Hull.

It was possible however executing both the Pareto Q-learning and Envelope Q-learning
algorithms. The PQL agent was trained for 1.5 million steps and showed signs of convergence,
as evidenced by the stability in the number of dominant solutions found by the algorithm on the
last steps in Figure 15.

Figure 15. Number of dominant solutions during PQL training in Lielupe CS

As for the Envelope agent, this was also trained for about 1.5 million steps and showed good
metrics, with a loss that decreases steadily (Figure 16).

Figure 16. Envelope network loss during training in Lielupe CS

Although we don’t have the Convex Hull because of the problem size, we can evaluate the
envelope solutions considering the front given by the execution of Pareto Q-learning. These
will provide us with a comparison of the two algorithms and allow us to evaluate the Envelope
Q-learning solutions like in the other cases.

Num of dominant solutions

Training loss

D4.4 Core module of the self-learning nexus engine

43 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

Table 8. Envelope test results in Lielupe CS with fixed policies

Test Nº of solutions in the Convex Hull
T1 0/3
T2 0/3
T3 0/3
T4 0/3
T5 0/3

Although the agent's learning appears to converge and suboptimal solutions were obtained,
none of these solutions match the convex hull set derived from Pareto Q-learning. Further
research on this issue will be conducted, and different hyperparameters will be reviewed.
Additionally, agents will be trained for further iterations, as the current number of iterations
seems insufficient given the total number of possible states.

D4.4 Core module of the self-learning nexus engine

44 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

7. The NEPAT DSS

The trained agents discussed in the previous section have been integrated into NEPAT to
validate the recommendation pipeline. A specific view in the NEPAT UI, the Decision Support
System view (Figure 17), has been deployed, allowing users to interact with the
recommendation service.

Figure 17. NEPAT UI. Decision Support System view

The view is divided into two sections. On the left side (Figure 18), the user can determine their
preferences to build a customized utility function. Various functionalities are provided in this
section. First, the user may choose to obtain recommendations based on a pre-defined policy
package. This option sets the initial state (starting policy package) from which the
corresponding agent will provide recommendations. Second, and most importantly, the user
can define the goals importance by setting different weights using slider mechanisms, one per
goal. Next, the user can specify the limit size of the recommended policy package. Finally, as
an additional filter, the recommended policies can be limited by sector or region (in those sub-
regional contexts) of application.

D4.4 Core module of the self-learning nexus engine

45 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

Figure 18. NEPAT UI. Decision Support System view. Zoom on preferences section.

Once the custom utility function is configured, the user must press the “Get Policy Package
Recommendation” button. This action will trigger the DSS to obtain the recommendations,
which will be listed on the left side of the screen (Figure 19).

Figure 19. NEPAT UI. Decision Support System view providing policy package recommendations

The recommended policy packages are listed in a table (Figure 20), which can be expanded to
obtain further information about the impact of these policies if applied. First, the achievement
of goals is assessed, and second, the status of the nexus footprint indicators is provided. This

D4.4 Core module of the self-learning nexus engine

46 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

approach enables a comprehensive overview of the policy package impact across the entire
nexus.

Figure 20. NEPAT UI. Decision Support System view providing policy package recommendations. Zoom on

recommendations table.

If the user decides to accept any of the recommendations, the proposed policy package can be
directly imported into the Policy Package Builder section by clicking the apply button. This
allows the user to continue analyzing the impacts of that policy package through the NEPAT
functionalities.

D4.4 Core module of the self-learning nexus engine

47 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

8. Conclusions

The AI algorithmic foundations of the Self-Learning Nexus Engine have been formalized,
implemented, tested, and initially validated. Additionally, the Decision Support System service
has been successfully implemented and deployed, achieving one of the main objectives of task
T4.4 and WP4.

The self-learning nexus engine is the core mechanism that supports multi-objective decision-
making in the SLNAE/NEPAT tool. The self-learning term refers to the underlying Artificial
Intelligence (AI) and Machine Learning (ML) technology, enabling the creation of agents that
autonomously learn (i.e. self-learning) optimal policy combinations (i.e. policy packages) to
achieve the nexus-related objectives. We discuss and propose Multi Objective (Deep)
Reinforcement Learning (MODRL) as the foundational family of ML algorithms to implement
the NXG DSS.

Until M40 (end of task T4.4) this framework will be run for all CSs since each of the represents
a unique optimization problem. Additionally, there are three further layers of complexity. First,
each CS includes a set of reference scenarios (RCP-SSP combinations), each depicting different
potential future conditions. Second, the complexity models implemented by WP3 incorporate
randomness in the input data, allowing for both deterministic and stochastic execution modes.
Finally, one of the CSs (Inkomati) introduces an additional decision-making dimension: the
year when a policy is applied, which we call the ‘dynamic policies’ mode, in contrast to the
‘static mode’ with fixed policies. All these options are available through different
implementations of the CSs’ System Dynamic Models (SDMs). Consequently, an agent will be
trained for every combination of CS, reference scenario, randomness execution mode, and, for
the Inkomati CS, the policy mode, complementing those already presented.

The current version of the Self-Learning Nexus Engine is embedded in the public release of the
SLNAE/NEPAT at the following urls: https://slnae-dev.nexogenesis.eu or https://nepat-
dev.nexogenesis.eu.

Since the Self-Learning Nexus Engine inputs (i.e. the SDMs, the policies, the goals or the Nexus
footprint) are under constant validation, the current published version of the service is
designated as a Beta version and is subject to change. The DSS will be ready by August 2024
(M36) for the frontrunners CS (including the Inkomati CS), and for the followers CSs, it will
be ready by December 2024 (M40). Final policy package recommendations will be reported in
the corresponding WP5 deliverables (D.5.2 to D5.6) (M42).

The final version of the SLNAE is expected to be ready by February 2025 (M42) and will be
reported in D4.5 Final version of the self-assessment nexus engine with the corresponding
validation (M42).

https://slnae-dev.nexogenesis.eu/
https://nepat-dev.nexogenesis.eu/
https://nepat-dev.nexogenesis.eu/

D4.4 Core module of the self-learning nexus engine

48 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

9. References

[1] L. C. Thomas, “Constrained Markov decision processes as multi-objective problems.”

University of Manchester. Department of Decision Theory., 1982.
[2] L. Zadeh, “Optimality and non-scalar-valued performance criteria,” IEEE Trans.

Automat. Contr., vol. 8, no. 1, pp. 59–60, 1963.
[3] Y. Haimes, “On a bicriterion formulation of the problems of integrated system

identification and system optimization,” IEEE Trans. Syst. Man. Cybern., no. 3, pp. 296–
297, 1971.

[4] A. Charnes, W. W. Cooper, and R. O. Ferguson, “Optimal estimation of executive
compensation by linear programming,” Manage. Sci., vol. 1, no. 2, pp. 138–151, 1955.

[5] C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, “Handling multiple objectives with
particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 256–279,
2004.

[6] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE Comput. Intell.
Mag., vol. 1, no. 4, pp. 28–39, 2006.

[7] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by simulated annealing,”
Science (80-.)., vol. 220, no. 4598, pp. 671–680, 1983.

[8] C. M. Fonseca and P. J. Fleming, “Genetic algorithms for multiobjective optimization:
formulationdiscussion and generalization.,” in Icga, 1993, vol. 93, no. July, pp. 416–423.

[9] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective
genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197,
2002.

[10] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength Pareto
evolutionary algorithm,” TIK Rep., vol. 103, 2001.

[11] Q. Zhang and H. Li, “A multiobjective evolutionary algorithm based on decomposition,”
IEEE Trans. Evol. Comput., 2006.

[12] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley, “A survey of multi-objective
sequential decision-making,” J. Artif. Intell. Res., vol. 48, pp. 67–113, 2013.

[13] S. Dhaubanjar, C. Davidsen, and P. Bauer-Gottwein, “Multi-objective optimization for
analysis of changing trade-offs in the Nepalese water–energy–food nexus with
hydropower development,” Water, vol. 9, no. 3, p. 162, 2017.

[14] T.-S. Uen, F.-J. Chang, Y. Zhou, and W.-P. Tsai, “Exploring synergistic benefits of
Water-Food-Energy Nexus through multi-objective reservoir optimization schemes,”
Sci. Total Environ., vol. 633, pp. 341–351, 2018.

[15] M. Li, Q. Fu, V. P. Singh, D. Liu, and T. Li, “Stochastic multi-objective modeling for
optimization of water-food-energy nexus of irrigated agriculture,” Adv. Water Resour.,
vol. 127, pp. 209–224, 2019.

[16] F. Karamian, A. A. Mirakzadeh, and A. Azari, “Application of multi-objective genetic
algorithm for optimal combination of resources to achieve sustainable agriculture based
on the water-energy-food nexus framework,” Sci. Total Environ., vol. 860, p. 160419,
2023.

[17] I. Okola, E. O. Omulo, D. O. Ochieng, and G. Ouma, “A comparison of evolutionary
algorithms on a Large Scale Many-Objective Problem in Food–Energy–Water Nexus,”
Results Control Optim., vol. 10, p. 100195, 2023.

[18] F. Mansour, M. Al-Hindi, M. Abou Najm, and A. Yassine, “Multi-objective optimization
for comprehensive water, energy, food nexus modeling,” Sustain. Prod. Consum., vol.
38, pp. 295–311, 2023.

[19] R. S. Sutton and A. G. Barto, “Reinforcement learning: an introduction 2018 complete

D4.4 Core module of the self-learning nexus engine

49 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

draft,” 2017. doi: 10.1109/TNN.1998.712192.
[20] C. F. Hayes et al., “A practical guide to multi-objective reinforcement learning and

planning,” Auton. Agent. Multi. Agent. Syst., vol. 36, no. 1, p. 26, 2022.
[21] K. Van Moffaert, M. M. Drugan, and A. Nowé, “Hypervolume-based multi-objective

reinforcement learning,” in Evolutionary Multi-Criterion Optimization: 7th
International Conference, EMO 2013, Sheffield, UK, March 19-22, 2013. Proceedings
7, 2013, pp. 352–366.

[22] O. Emamjomehzadeh, R. Kerachian, M. J. Emami-Skardi, and M. Momeni, “Combining
urban metabolism and reinforcement learning concepts for sustainable water resources
management: A nexus approach,” J. Environ. Manage., vol. 329, p. 117046, 2023.

[23] W. Zhang, A. Valencia, and N.-B. Chang, “Fingerprint Networked Reinforcement
Learning via Multiagent Modeling for Improving Decision Making in an Urban Food–
Energy–Water Nexus,” IEEE Trans. Syst. Man, Cybern. Syst., 2023.

[24] R. Wu, R. Wang, J. Hao, Q. Wu, and P. Wang, “Multiobjective multihydropower
reservoir operation optimization with transformer-based deep reinforcement learning,”
J. Hydrol., p. 130904, 2024.

[25] K. Van Moffaert and A. Nowé, “Multi-objective reinforcement learning using sets of
pareto dominating policies,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 3483–3512, 2014.

[26] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8, no. 3–4, pp. 279–
292, May 1992, doi: 10.1007/bf00992698.

[27] K. Van Moffaert, M. M. Drugan, and A. Nowé, “Scalarized multi-objective
reinforcement learning: Novel design techniques,” in 2013 IEEE symposium on adaptive
dynamic programming and reinforcement learning (ADPRL), 2013, pp. 191–199.

[28] M. Ruiz-Montiel, L. Mandow, and J.-L. Pérez-de-la-Cruz, “A temporal difference
method for multi-objective reinforcement learning,” Neurocomputing, vol. 263, pp. 15–
25, 2017.

[29] M. Reymond and A. Nowé, “Pareto-DQN: Approximating the Pareto front in complex
multi-objective decision problems,” 2019.

[30] R. Yang, X. Sun, and K. Narasimhan, “A generalized algorithm for multi-objective
reinforcement learning and policy adaptation,” Adv. Neural Inf. Process. Syst., vol. 32,
2019.

[31] D. M. Roijers, D. Steckelmacher, and A. Nowé, “Multi-objective reinforcement learning
for the expected utility of the return,” in Proceedings of the Adaptive and Learning
Agents workshop at FAIM, 2018, vol. 2018.

[32] M. Reymond, C. F. Hayes, D. Steckelmacher, D. M. Roijers, and A. Nowé, “Actor-critic
multi-objective reinforcement learning for non-linear utility functions,” Auton. Agent.
Multi. Agent. Syst., vol. 37, no. 2, p. 23, 2023.

[33] J. Xu, Y. Tian, P. Ma, D. Rus, S. Sueda, and W. Matusik, “Prediction-guided multi-
objective reinforcement learning for continuous robot control,” in International
conference on machine learning, 2020, pp. 10607–10616.

[34] F. Felten et al., “A toolkit for reliable benchmarking and research in multi-objective
reinforcement learning,” Adv. Neural Inf. Process. Syst., vol. 36, 2024.

[35] H. Hasselt, “Double Q-learning,” Adv. Neural Inf. Process. Syst., vol. 23, 2010.
[36] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-

learning,” in Proceedings of the AAAI conference on artificial intelligence, 2016, vol.
30, no. 1.

D4.4 Core module of the self-learning nexus engine

50 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

Annexes

D4.4 Core module of the self-learning nexus engine

51 This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 101003881

Annex I – Tests for MODRL agents

To test the performance of the Envelope algorithm, five random tests have been proposed for
each solved case study. For each of these tests, the same 3 sets of weights were used to see the
variety of responses offered by the algorithm. The following tables present the starting episodes
and weights used for each CS.

Table 9. Test episodes for Envelope

 Test starting episodes
Test name Jiu Inkomati

Fixed policies
Lielupe

T1 [] [] []
T2 [P2, P6] [P2, P7]
T3 [P1, P18] [P4, P8]
T4 [P12, P16] [P1, P10]
T5 [P1, P5, P15] [P1, P5, P11]

Table 10. Test weights for Envelope

Test weights

Jiu

[0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0]
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5024043002285505,
0.0, 0.4975956997714494, 0.0]

Inkomati
Fixed policies

[0.07142857142857142, 0.07142857142857142, 0.07142857142857142,
0.07142857142857142, 0.07142857142857142, 0.07142857142857142,
0.07142857142857142, 0.07142857142857142, 0.07142857142857142,
0.07142857142857142, 0.07142857142857142, 0.07142857142857142,
0.07142857142857142, 0.07142857142857142, 0.07142857142857142]
[0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5]

Lielupe

