

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant

agreement No 101003881

D4.1 Self-learning nexus engine
specifications and technical design

Lead: Lluís Echeverria (EUT)
Date : 30/06/2022

D4.1 Self-learning nexus engine specifications and technical design

2 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Project Deliverable

Project Number Project Acronym Project Title

101003881

NEXOGENESIS Facilitating the next generation of effective
and intelligent water-related policies,
utilizing artificial intelligence and
reinforcement learning to assess the water-
energy-food-ecosystem (WEFE) nexus

Instrument: Thematic Priority

H2020 RIA LC-CLA-14-2020

Title

Self-learning nexus engine specifications and technical design

Contractual Delivery Date Actual Delivery Date

M10: June 2022 M10

Start Date of the project Duration

01 September 2021 48 months

Organisation name of lead contractor for this deliverable Document version

EUT 1.0

Dissemination level Deliverable Type

Public Report

Authors (organisations)

Lluís Echeverria (EUT), Nuria Nievas (EUT) and Josep Pijuan (EUT)

Reviewers (organisations)

Lydia Vamvakeridou-Lyroudia (KWR)

D4.1 Self-learning nexus engine specifications and technical design

3 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Abstract

The NEXOGENESIS (NXG) objective in WP4 is to develop the Self Learning Nexus

Assessment Engine (SLNAE) platform to enable an intelligent assessment in the WEFE

policy-making scenario. In this line, the present document reports the first steps towards this

goal.

The six WP4 pillars are introduced, which identify the fundamental Self-Learning Nexus

Assessment Engine (SLNAE) components and link them with other NGX WPs outputs: i)

the WEFE Policy framework, ii) WEFE Goals, Targets and Indicators, iii) the Nexus

complexity modelling, iv) the Decision Support System functionalities, v) the Data Sharing

Tools, and vi) the Graphical User Interface.

In order to proceed with the SLNAE design, first, the use case methodology has been

implemented to collect user stories and later to identify the required functionalities the

platform must offer. On this basis, the general SLNAE platform architecture and all the

components have been designed, and the required technologies to achieve so are identified.

A deeper analysis has been carried out to define the algorithmic methodologies and NXG

WP4 research in the self-learning engine, which will be based on novel AI, ML and control

theory techniques.

Finally, the NXG Data Sharing Tools system has been also designed following the same

approach (use cases, requirements and final design) to enable a flexible cross-WP data

exchange.

The present document corresponds to the first version (v1.0) of deliverable D4.1 Self-

learning nexus engine specifications and technical design. In M24, a second version (v2.0)

will be presented where the stakeholders’ views and feedback will be considered to improve

the use cases, requirements and ultimately the designs presented in v1.0. With this, it is

expected to generate a more useful and valuable tool for SHs and final users.

Related Deliverables:

There are no related deliverables

Keywords

SLNAE, AI, DSS, UI, design

D4.1 Self-learning nexus engine specifications and technical design

4 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Abbreviation/Acronyms
AI Artificial Intelligence

CS Case Study

CSS Cascading Style Sheets

DL Deep Learning

DMP Data Management Plan

DNN Deep Neural Networks

DLR Deep Reinforcement Learning

DSS Decision Support System

GUI/UI Graphical User Interface/User Interface

HTML Hyper Text Markup Language

HTTPS Hypertext Transfer Protocol Secure

ICT Information and Communication Technologies

IDR Internal Data Repository

JS JavaScript

JSON JavaScript Object Notation

JWT Json Web Tokens

ML Machine Learning

MS Milestone

NXG Nexogenesis project

NXGT Nexogenesis tool

ORM Object Relational Mapper

SDGs Sustainable Development Goals

SDM System Dynamic Model

SLNAE Self-Learning Nexus Assessment Engine

SH Stakeholder

REST Representational State Transfer

RL Reinforcement Learning

RP Reference Pathway

WEFE Water-Energy-Food-Ecosystem

D4.1 Self-learning nexus engine specifications and technical design

5 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Contents

Project Deliverable ... 2

Abbreviation/Acronyms ... 4

Contents .. 5

Figures .. 7

Tables ... 8

1. Introduction ... 9

1.1. Structure ... 10

2. Pillars .. 11

4.1. WEFE Policy Framework .. 11

4.2. WEFE Goals, Targets & Indicators ... 12

4.3. Nexus complexity modelling ... 12

4.4. DSS functionalities .. 13

4.5. Data Sharing Tools .. 13

4.6. Graphical User interface (GUI) ... 13

3. Use cases ... 16

3.1. The actors(users) .. 16

3.2. The use cases template .. 17

4. Requirements .. 20

5. SLNAE Design ... 22

5.1. General overview ... 22

5.2. SLNAE .. 23

5.2.1. SLNAE Core service .. 24

5.2.2. Web Service API .. 25

5.2.3. SLNAE database .. 26

5.2.4. SLNAE GUI ... 26

5.2.5. Self-learning engine and AI algorithms ... 29

5.2.6. DSS ... 39

5.2.7. Simulation Policy Framework .. 39

5.2.8. Analytical Engine ... 40

5.3. Nexogenesis Data sharing tools ... 40

5.3.1. Internal Data Repository .. 41

6. Conclusions ... 45

D4.1 Self-learning nexus engine specifications and technical design

6 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Future Work/Next Steps ... 46

References .. 47

Annexes .. 50

Annex I ... 51

Annex II .. 68

D4.1 Self-learning nexus engine specifications and technical design

7 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Figures
Figure 1. NXG co-creation framework for Nexus Policy packages identification 9

Figure 2. Use case methodological approach workflow .. 16

Figure 3. SLNAE platform schema .. 23

Figure 4. SLNAE GUI views Flow .. 27

Figure 5. NXG co-creation framework for Nexus Policy packages identification 30

Figure 6. Reinforcement Learning interaction flow ... 32

Figure 7. Nexogenesis data pipeline .. 41

Figure 8. NXG cross-WP data pipelines in the Internal Data Repository 42

D4.1 Self-learning nexus engine specifications and technical design

8 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Tables
Table 1. Groups of users involved in the final SLNAE operation ... 17

Table 2. Descriptive fields for use case definition ... 17

Table 3. Descriptive fields for requirements definition ... 20

Table 4. SLNAE Web Service endpoints ... 25

Table 5.Internal Data Repository data, data formats, data flows, and description 42

D4.1 Self-learning nexus engine specifications and technical design

9 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

1. Introduction
The Self Learning Nexus Assessment Engine (SLNAE), for simplification also known as the

Nexogenesis Tool (NXGT), is a platform aimed to provide support in WEFE (Water, Energy,

Food and ecosystems) policy-decision-making scenarios. It considers the Nexogenesis (NXG)

holistic approach for nexus governance to propose integrative policies with the aim to maximise

global policy goals. At its core, Artificial Intelligence (AI) and Machine Learning (ML)

algorithms enable the possibility to effectively operate the complex WEFE interlinkages and

provide optimal policy advice for improved resources management.

In this context, the SLNAE tool will be used both during the NXG project time and after its

finalization. In the first case, the engine will be used along with the proposed NXG co-creation

framework for nexus governance and WEFE resource management. Figure 1 presents this stage

of the cocreation framework, where the following iterative pipeline is defined: i) Nexus policies

and targets are defined together with WP1 and SHs (T1.4), ii) Proposed policies are integrated

into the complexity science tools developed in WP3 (T3.3), iii) Optimal policy packages are

built by the self-learning engine in WP4 (T4.4), and iv) SHs and WP1 validate policy packages

recommendations (T1.4). When possible (e.g. in front-runners CSs), two rounds of this

methodology will be applied. Further information regarding this process can be found in WP1

deliverables.

Figure 1. NXG co-creation framework for Nexus Policy packages identification

At a later stage, during the project, the SLNAE capabilities will be extended with ICT

technology and functionalities (e.g. a Graphical User Interface or an Open Semantic

Repository) to let the final users autonomously interact with the NXG research and

developments linked to the NXG CSs. In the end, a completely online platform will be

developed which will integrate all the NXG outcomes to help the community to understand the

WEFE nexus interlinkages and policy impacts and implications.

In parallel, the SLNAE will also provide support to the NXG project in terms of data-sharing

tools. A common data repository will be deployed to centralize all the data created during the

NXG project, which considers, at least, the following entities: i) policies designed in WP1 and

Definition of Nexus Policies
and Targets

(WP1 & SHs)

Integration of Nexus
Policies and Indicators into
Complexity Science tools

(WP2 & WP3)

Identification of optimal
Nexus Policy packages

(WP4)

Evaluation of proposed
policy packages

(WP1 & SHs)

D4.1 Self-learning nexus engine specifications and technical design

10 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

WP5, ii) outputs of nexus scenario simulations generated in WP2, iii) complexity science tools

developed in WP3, and iv) the definition of policy goals and targets, WEFE footprint indicators,

and CS specific indicators in WP1 and WP5. This system will contribute to a better cross-WPs

organization and synchronization. Furthermore, all this information and data will be considered

under the Data Management Plan (DMP) umbrella, and will be public (in those cases where no

restrictions are identified) through the NGX open repositories.

With the previous general objectives in mind, it is of utmost importance to proceed with a

detailed disaggregation and description of the functional and non-functional requirements

required by the proposed solution. Later, once identified, those requirements are translated into

system functionalities and ultimately incorporated into the platform design. In this scenario, the

design of the SLNAE tool also takes advantage of the NXG cocreation methodology, since both

consortium expert partners and SH are taken into account in this process.

In this context, this document represents the first version of the deliverable D4.1, and includes

all the use cases, requirements and designs obtained till now. During the first half of the project,

this design will be shared with the SHs and their vision and feedback will be collected (mainly

in workshops WS2 and WS3). Consequently, this document will be accordingly iterated. As a

result, in M24 the final version of D4.1 will be generated, which will cover the whole SLNAE

platform design by taking also into account the SHs view and advice (M24). Mainly, the topics

that are most likely to be extended are those where SHs’ feedback is considered, such as the

SLNAE GUI or the DSS functionalities.

1.1. Structure
The document is structured as follows: Section 2 introduces the WP4 pillars, those key

components that will guide the SLNAE platform development. Next, Section 3 presents the

methodology used to collect and define the use cases, which are later used in Section 4 to

identify all the SLNAE requirements. On this basis, Section 5 develops the basis of the SLNAE

platform. Finally, Section 6 ends with the conclusions and next steps.

D4.1 Self-learning nexus engine specifications and technical design

11 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

2. Pillars
In order to start the collection of requirements for the SLNAE and ultimately proceed with its

design, the fundamental components of the tool have been classified into pillars. A pillar

represents a principal element that constitutes a basis to support the structure of the engine.

Each pillar has its own needs and functionalities. Most of the pillars are represented by a single

component, however, the GUI pillar is compounded by several ones.

The six WP4 pillars are introduced, which identify the fundamental Self-Learning Nexus

Assessment Engine (SLNAE) components and link them with other NGX WPs outputs: i) the

WEFE Policy framework, ii) WEFE Goals, Targets and Indicators, iii) the Nexus complexity

modelling, iv) the Decision Support System functionalities, v) the Data Sharing Tools, and vi)

the Graphical User Interface.

 The identified pillars are presented below.

4.1. WEFE Policy Framework
The NXG cross-sectorial policy-making framework is a critical input and component in WP4.

It defines the available set of policies that will be used by the AI self-learning engine to generate

optimal WEFE policy packages. Furthermore, in a second phase, it will also contain all the

CSs’ policies that will be available in the SLNAE platform to be used by the users in the WEFE

simulations.

Policies will have different parameters for the definition of their applicability and logic. The

qualitative impacts of policies in the nexus sectors will be translated into quantitative effects

through the SDMs. In this context, the SDMs will be able to simulate any policy, no matter if

it is regional or not. However, there will be a limited number of combinations of policies since

not all of them make sense. Therefore, a list of available policies and permitted combinations

should be made per CS. Moreover, depth analysis of the effect of policy packages on the SDMs

variables should be presented in order to understand the implications and relation between

nexus sectors and impacts. In summary, this pillar covers the integration of policies per each

CS, the best policy packages per CS, the internal policy parameters to be considered in the

application of each policy, and the external policy parameters that will define the simulation

logic.

Some of the questions that need to be solved in collaboration with WPs, CSs and SHs regarding

the WEFE policy framework component are: Which policies are relevant per sector and CS?

The policies to be implemented should be policies that already exist, or new

policies/instruments can be proposed? Which are the capabilities of the simulations regarding

policy implementation? What type of policies will be implemented? Which combination of

policies (policy package) is reasonable and coherent to be implemented? And finally, which

type of policy parameters will be available for the end-users’ policy package selection and

definition? All this information will be provided by CS working in close collaboration with

WP1 and WP5.

D4.1 Self-learning nexus engine specifications and technical design

12 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

4.2. WEFE Goals, Targets & Indicators
Another critical element in WP4 is the WEFE Goals, Targets & Indicators pillar. A policy goal

defines a strategic objective for a particular policy or set of policies, usually related only to one

nexus sector. Policy goals are found in official policy documents and may be different per CS.

Targets make policy goals measurable by quantifying them. A target will be a reference point

to see how users are getting closer to a certain ambition. Moreover, users may select more

ambitious targets than the ones established by regulations. The achievement of targets will be

assessed by a group of metrics (indicators) previously associated with the specific targets. There

will be a set of common indicators across CSs and specific indicators per each CS. Common

indicators will be selected by the project partners to allow comparison between CSs, and the

case-specific indicators will be co-decided with SHs in each CS based on what is prescribed by

policies and on SHs’ preferences. Indicators will be calculated using the outputs from the SDMs

in the SDM.

Furthermore, composite indicators will be considered to combine one or more indicators on a

more general level to summarize the status of each nexus sector. There is no need to involve

SH at this stage; it is the job of the project to come up with meaningful composite indicators.

Finally, the WEFE footprint indicators represent another element in the WEFE Goals, Targets

& Indicators pillar that will consider the ecosystem to yield a composite index that utilises the

nexus as its conceptual framework related to Sustainable Development Goals (SDGs). These

indicators will be common for all CSs in the SLNAE, and will enable cross CSs comparisons.

Data will be normalized in order to allow this comparison. The availability of data, what data

is available, and what data is relevant needs to be considered in the development of these

indicators (WP3).

Goals, WEFE targets, WEFE indicators, composite indicators, and WEFE footprint indicators

must be well defined to evaluate the applications of policy packages, and allow comparison

between different situations, reference pathways, and CSs. All this information will be provided

by WP1, WP3 and WP5.

4.3. Nexus complexity modelling
This pillar encompasses all the issues related to the implementation of functionalities in the

SDMs. SDMs functionalities should be defined in the early stages of the project since STELLA

SDMs will be translated into Python language in an automatic procedure for their integration

and execution in the SLNAE tool. The main mechanisms that will be used in the SDMs have

been specified to be stocks, flows, converters, and an array of converters [1]; but others like

delays may be also analyzed. All mechanisms must be known and considered in the translation

process.

Moreover, policy package implications will be represented in SDMs. They will affect some

SDMs variables or projections. However, higher logic of policy behaviour will be implemented

in the SLNAE whenever it becomes easier. For that, policy parameters and policy typologies

used to define a policy should be confirmed in advance.

D4.1 Self-learning nexus engine specifications and technical design

13 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Similarly, all variables needed to compute indicators and low-level indicators will be provided

by the SDMs. However, high-level indicators and targets will be computed outside the SDMs,

in the SLNAE, according to end-users requests.

Finally, uncertainty must be considered in the SDMs and the SLNAE (both in the GUI and the

self-learning engine processes).

Therefore, the SDM component will comprise all use cases related to the STELLA mechanisms,

policy packages implementation and logic, SDMs needs for the computation of indicators, and

the implementation of uncertainty through the SDMs. In the latter case, for each SDM input

variable, there will be a data distribution specification (e.g. mean and standard deviation in a

normal distribution) instead of a time series.

4.4. DSS functionalities
The Decision Support System (DSS) pillar is based on the self-learning engine, and has two

main functionalities: the policy identification in the SH co-creation process to evaluate and

support the policy package definition (DSS functionalities - co-creation process), and the end-

user decision support system through the SLNAE UI (DSS functionalities - SLNAE).

The first functionality aim is to help in the iterative process to identify the relevant policy

packages for their evaluation together with SHs under the co-creation framework. This

functionality will be considered during the project execution.

The second functionality is to recommend valuable policy packages to the users in order to

assist their analysis and decision-making process. Recommendations will be made based on the

default targets and the user-defined targets in the tool. Policies may be applied with different

start and end parameters, range of application, and other additional decision variables. Every

freedom in the definition of policies complicates the most favourable selection of parameters

to accomplish and satisfy all trade-offs in policy goals. All use cases related to desired

recommendations must be specified in the DSS component such as the number of

recommendations expected, the details that are given per each recommendation, and the desired

response time per execution.

4.5. Data Sharing Tools
The Data Sharing Tools pillar is defined to allow communication between all partners in the

sense of data and model sharing, and to automate the updating of models and shared data used

by each of the WPs that make up the SLNAE tool. A protocol will be needed to manage the

process to upload new data versions to the platform, like file versioning and folder structure,

and to notify the required people in the NXG pipeline.

4.6. Graphical User interface (GUI)
The GUI pillar represents an interactive system with visual components and graphical

representations that enable the SHs, and more specifically, the end-users to access the SLNAE

platform. Thus, the objectives and sections of the GUI are identified based on end-user needs.

D4.1 Self-learning nexus engine specifications and technical design

14 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Therefore, the first step has been the recognition of potential users in which two particular

groups have been identified based on specific presentation of the information: technical users

and strategic users. The two types of views (related to each group of potential viewers) should

be interlinked, and the users should have the option to move from one view to the other in each

scenario. Each type has a different level of detail and a different way of visualization. The

information is available to everybody with no restriction on different users. The two types of

views are:

• Technical view: This view is given for users with some level of knowledge and

expectation of an extensive and detailed study. It enables a depth analysis of the

implications and impacts of policies in the WEFE sectors and variables, numerical

evaluations, cause-effect relations, and statistics for scientific reasoning. Examples of

technical users are scientists and academics.

• Strategic view: This view is given for the users that expect synthesized and clear

information with colourful simple graphics and diagrams. Visualization should

comprise as few words and numbers as possible of the simulation results and present

the indicators evaluation and the required comparisons. Examples of technical users are

policymakers, authorities, associations, and general users.

Based on the specific aims of the GUI, use cases will be classified into different components:

• User interface – General: This component is referring to the initial user interface where

an explanation of the project and its methodologies will be given, information about the

CSs will be presented, and the user will be able to sign up, log in, and manage its profile,

setting, and other user’s functionalities.

• User interface –Simulations Management: This user interface presents the option to

start new simulations, access the saved ones, duplicate/edit/remove saved simulations,

and presents the link to the results and comparisons of simulations.

• User interface – Simulations Configuration: There will be two stages to configuring and

launching a simulation. The configuration of a simulation is based on the selection of

CS, the selection of the starting point or reference pathway, the specification of whether

uncertainty is applied or not in the simulation process, and the selection of user-defined

goals, targets, and indicators for the evaluation of policy packages. In each CS, there

will be fixed goals and targets either mandated by law or defined by SHs.

• User interface – Simulation: The other stage is the simulation itself. It will be a new

screen with the simulation view where the user will be able to select available policy

packages and define the simulation step. The Decision Support System (DSS) will be

considered at this stage given recommendations under the user’s requests.

• User interface – Simulation Results: The affected variables from the SDMs, indicators,

and visualizations should be provided at each step of the simulation process presenting

how the application of a policy from a nexus sector affects another nexus sector. All

variables’ relations should be integrated into the SDMs.

• User interface – Simulations Comparison: Another important component to consider in

the GUI is the comparability between different policy package executions and their

implications in the indicators and targets to achieve the policy goals. The GUI workflow

D4.1 Self-learning nexus engine specifications and technical design

15 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

may be a mix between a step-by-step visualization and a dashboard to present results

and comparisons. Comparisons between different simulations in the same CS and

against different CSs are needed.

This is the pillar that may suffer more modifications in its design during the first two years of

the project (M24). This is because the SHs' contributions and views are expected with the aim

to generate a tool useful for them. WP4 will focus workshops WS2 and WS3 on these topics.

In terms of planning, there will be no delays since T4.5 is expected to start at M24.

Additionally, during the September 2022 annual project meeting in Riga (M12), there will be a

workshop to co-design in more detail the visualization tool, which will be detailed in the next

version of this Deliverable. Moreover, mock-ups will be presented to help with the SLNAE

GUI definition process.

D4.1 Self-learning nexus engine specifications and technical design

16 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

3. Use cases
This section describes the use cases methodology implemented in WP4 to facilitate the

identification of needed features in the development of the SLNAE. It aims to identify, clarify

and organize system requirements with three main essential elements:

- The actor. The system user, being a single or group of users

- The goal. The successful outcome after completing a process

- The system. The needed steps to achieve the goal, including necessary preconditions or

other requirements

A complete use case includes one main but also alternative flows to achieve a goal. For this

reason, for each of the flows, it is important to highlight what triggers it and which are the

preconditions needed. The definition of use cases should be technology agnostic, referring only

to the business logic needed by actors to achieve the goal, allowing developers to use the best

technology according to the list of requirements. The most detailed the use cases can be

provided, the most completed list of requirements will be achieved. In this scenario, Figure 2

presents the schema of the proposed methodology to collect the required information.

Figure 2. Use case methodological approach workflow

3.1. The actors(users)
The definition of the use cases is centred on the actors, the users. The potential users of the

SLNAE have been distinguished into two main groups according to the main functionalities as

end-users: Strategic users (users who need simple but clear UIs and functionalities, which aim

is to take strategic decisions) and Technical users (users with a deeper technical knowledge that

aim to realize complex analysis or simulations). The detailed definition of both groups, even

new user identifications, is ongoing in the scope of the co-creation framework and workshops

D4.1 Self-learning nexus engine specifications and technical design

17 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

organized by WP1 team in coordination with the CSs (WP5). Furthermore, the users within

these groups can be directly linked to the tree-tier SHs analysis carried out by WP5 (MS6

Stakeholder register, resulting stakeholder mapping).

On the other side, there is a potential third group of users, called data providers, that will feed

the SLNAE with different sources of data. At the moment, it is expected data from WP2 related

to the biophysical and socio-economic modelling, the SDMs from WP3 to be integrated into

the SLNAE, Nexus indicators and policies definitions from CSs, WP1 and WP5, or CSs

information from WP5. All these aspects are further introduced in section 5.3 Nexogenesis Data

sharing tools.

Finally, the last type of user expected is the administrator, which will have the responsibility

to configure, update and maintain any of the SLNAE modules and infrastructure.

Table 1. Groups of users involved in the final SLNAE operation

User group Description Examples

Strategic users People using the tool as a DSS to understand

policy effects and impacts, and to create or

prioritize policy-making strategies

Policy makers

Technical users People using the tool to investigate at a low

level the NEXUS interlinkages and policy

impacts, and the implication of

transboundary decisions

Project partners,

nexus researchers

or technical staff

from stakeholder

bodies

Data providers Project partners or River basin data

responsible with aims to update needed data

to run the tool

CMCC, UHE, UTH

staff

Administrator Administrators of the tool. EUT staff

3.2. The use cases template
The consortium has been working on the definition of uses cases and user requirements based

on a set of meetings in the scope of WP4 along with all deliverables and documentation

provided by the consortium. To get a complete list of use cases, it has been shared and discussed

with the project partners, mainly WPLs and CS leaders, a template for its definition. The

template includes the columns described in Table 2 to define each SLNAE use case.

Table 2. Descriptive fields for use case definition

Field Content

ID [Unique ID of this use case]

Description [Describe the goal and context of this use case. This is

usually an expanded version of what you entered in the

"Title" field.]

D4.1 Self-learning nexus engine specifications and technical design

18 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Component [Select a component of SLNAE (The list of components

can be updated in the sheet List of items), for what the use

case described is focused on]

Goal [Enter the goal of the use case - preferably as a short, active

verb phrase]

Preconditions [Describe the state the system is in before the first event in

this use case. What is needed to allow this use case]

Triggers [Which is the event, the real need, the action that fires this

use case usage]

Success post condition [Describe the state the system is in after all the events in

this use case have taken place.]

Primary Actor [A person or a WP partner that interacts with your

component to achieve the goal of this use case.]

Main course [Brief description and list of steps the actor should do to

achieve the success post conditions, from the

preconditions. This is the key point in the use cases

description]

Extensions [Describe all the other scenarios for this use case -

including exceptions and error cases.]

Frequency of Use [How often will this use case be used?]

Status [Development status]

Owner [Who owns this use case in the project team? Please add the

partner acronym]

Priority [Priority of this use case. Use: High, Medium, Low]

The SLNAE components organization is based on the WP4 pillars definition (section 2 Pillars).

The following elements have been identified:

- SLNAE-User Interface

o General

o Simulation configuration

o Simulation management

o Simulation

o Simulation results

o Simulation comparison

- SLNAE-Backend

- SLNAE-DSS

- SLNAE-Data Sharing Tool

The SLNAE-User Interface has been divided into six subcategories in order to achieve better

granularity, since it was expected to contain many of the use cases due to the stories definition

(i.e. final functionalities) mainly start there.

After a first iteration of feedback request, it has been created a simpler template (without some

columns) in order to facilitate a quick assessment of the required use cases by non-technical

D4.1 Self-learning nexus engine specifications and technical design

19 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

partners. On this basis, the complete table is generated. The basic template contains the

following columns:

- ID/code

- Description

- Component

- Goal

- System users

- Main course(steps)

- Potential requirements (used to identify non-functional requirements)

- Comments

Table AI.1, in Annex I, shows the complete list of use cases describing the main

functionalities that the SLNAE and its components have to include according to their

requirements. So far, thirty-six (36) use cases have been identified, but new others can be

identified during the first two years of the project based on SHs feedback (collected in

workshops WS2 or WS3). The final version of the use cases will be presented in the next

version of this deliverable.

D4.1 Self-learning nexus engine specifications and technical design

20 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

4. Requirements

The IEEE Standard Glossary of Software Engineering Terminology [2] defines a requirement

as:

1) A condition or capability needed by a stakeholder to solve a problem or achieve an

objective.

2) A condition or capability that must be met or possessed by a solution or solution

component to satisfy a contract, standard, specification, or other formally imposed

documents.

3) A documented representation of a condition or capability as in (1) or (2).

In this scenario, a system requirements specification collects information on the requirements

for a tool or service, and describes what the software will do and how it will be expected to

perform. It is composed by functional and non-functional requirements. Both types are essential

for a clear system characteristics and components identification and, thus, for a successful and

smooth development stage. The former group covers all those functionalities a system must

offer and what it must do. In case the system does not meet a functional requirement, it will fail

in achieving their final objective. In parallel, the later group collects all those requirements that

describe how the system works, and are focused on how it goes about delivering a specific

function. If non-functional requirements are not met, final users may become frustrated with

how the system works and, consequently, it will also fail in achieving their objectives.

Thus, following the methodology proposed in WP4, the system requirements specification is

extracted from the Use Cases definition (section 3 Use cases). Here, WP4 software technicians

have analysed the proposed use cases and have generated the system requirements specification

table of functional and non-functional system requirements the SLNAE tool has to provide and

implement.
Table 3. Descriptive fields for requirements definition

Field Content

ID [Unique ID of the requirement. FR-X for functional

requirements, an NFR-Y for non-functional requirements]

Use Case ID [Use Case from where the requirement has been identified]

Component [Select a component of SLNAE (The list of components

can be updated in the sheet List of items), for what the

requirement described is focused on]

Description [Describe the goal and context of requirement]

Details [Further details and clarifications]

Prerequisites [Important constraint that must be accomplished]

To be iterated [Indicated whether a requirement can be modified based on

SHs’ feedback]

D4.1 Self-learning nexus engine specifications and technical design

21 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Table 3 describes the information required to define a system requirement. It is important to

note that some requirements are candidates to be modified during the first half of the project

based on the SHs’ feedback collected in WS2 and WS3. This possibility is indicated in the last

column of Table 3.

So far, seventy-seven (77) requirements have been identified and extracted from the proposed

use cases. Sixty-eight functional requirements (68) and nine (9) non-functional requirements.

D4.1 Self-learning nexus engine specifications and technical design

22 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

5. SLNAE Design
The final goal of task T4.1 is to establish the basis and provide the design for the implementation

and development of the SLNAE. To achieve so, first, use cases and requirements have been

identified, as shown in the previous sections, by considering the SHs (including also NXG

partners) necessities.

Below, the technical design of the SLNAE platform is presented, which provides a response to

all the system requirements identified so far. This design includes both, a high-level architecture

schema where all components and information flows are represented, and a low-level

description of such elements. Finally, the required software technologies necessary to construct

the systems are also proposed.

It is important to recap that the SLNAE tool will be used both during the NXG project and after

its finalization. In the first case, the engine will be used to identify optimal policy packages to

maximise goals and targets defined by SHs in the co-creation framework cycle. This necessity

forces WP4 to start working first on the AI engine in order to be able to have the system ready

when needed. Later, the online web platform will be built around the engine to offer the final

SLNAE framework.

5.1. General overview

Figure 3 presents a general overview of the SLNAE platform where all the actors involved in

the NXG WEFE approach can be identified. The proposed SLNAE global architecture is

organized into four inter-related components, each one representing a key element of the NXG

project. Furthermore, each component is aligned with one, or various, WP4 pillars.

The first component corresponds to the Stakeholders & co-creation framework, which

represents WP1 and WP5 responsibilities and outcomes, and is aligned to the WEFE Policy

Framework and WEFE Targets & Indicators pillars. The second component covers the Nexus

integration aspect of the NXG project. It integrates the technical WPs (WP2 and WP3), and is

aligned to the Nexus complexity modelling pillar. Moreover, it is also indirectly linked to the

WEFE Policy Framework and WEFE Targets & Indicators pillars since these concepts will be

embedded into the SDMs.

The third component corresponds to the SLNAE itself, developed in WP4. It is mainly linked

to all the pillars, since all of them will be finally integrated there, although it will particularly

focus on the DSS functionalities and Graphical User interface ones. Finally, as an extension of

the SLNAE platform, the NXG Data Repositories & Dara Sharing Tools component is related

to the Data Sharing Tools pillar, and contains data from all WPs (from WP1 to WP5). The WPs

generated information will be stored in the NXG Data Sharing tool, and directly and

automatically integrated into the SLNAE. Further information regarding data created by each

WP and shared across other WPs is presented in section 5.3.1

D4.1 Self-learning nexus engine specifications and technical design

23 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Figure 3. SLNAE platform schema

Below, all the SLNAE components are introduced, and an initial design is proposed. Each

decision and functionality proposal is linked to the corresponding requirement from table AII.1.

5.2. SLNAE
The SLNAE final platform is designed as an online tool (NFR-03 to NFR-05) to enable remote

access to the users. In this sense, the users will not need additional Hardware resources since a

browser is the only requirement to access and use it.

The platform architecture is divided into seven modules, as can be seen in Figure 3, each one

with a specific objective and responsibility:

- SLNAE Core service

- Web Service API

- SLNAE database

- SLNAE GUI

- Simulation Policy Framework

- Self-Learning engine

- Decision Support System

- Analytical Engine

Python1 programming language will be used to develop such modules, and special attention

will be put to the solution components testing. Continuous delivery methodologies will enable

automated and continuous validation, integration and deployment of new developments.

Three environments are proposed for the development, test, and final deployment of the

SLNAE platform:

- Development: First environment where all developments will be tested by the technical

team. A series of automatic unit-tests, end-to-end tests and integration tests will be

defined to cover different issues such as Global components, Local components, load

1 https://www.python.org/

https://www.python.org/

D4.1 Self-learning nexus engine specifications and technical design

24 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

testing, browsers compatibility, screen resolutions, security, resilience, scalability

and/or interoperability.

- Staging: Once developments are ready and validated in the DEV environment, they will

be deployed into the Staging one. Here, the NXG partners and CSs will be able to access

and use the new additions. It will enable a second testing phase, more focused on the

context validation and correct functioning of Nexus logics (e.g. policies, goals, etc).

- Production: Final environment where the SLNAE tool will be publicly available.

The SLNAE Coordination & Integration service will manage all these tasks and processes to

ensure a high-quality system in terms of availability, capacity, interoperability, performance,

reliability, robustness, safety, security, resilience and usability (NFR-01 to NFR-09).

5.2.1. SLNAE Core service
The SLNAE Core service will principally coordinate all SLNAE platform and module

communication, and will monitor the status of the services.

It will implement the required mechanisms to persist and load data from the SLNAE Data

repositories. In this context, it will trigger and coordinate the automatic processes to integrate

other WPs outputs into the system logic. To do so, it will be connected to the Data Sharing Tool

and will consume new information regarding policies, goals, targets, indicators, CS information

and SDMs. Here, the I18N module will be in charge of enabling text translation based on the

user profile (FR-07, English, Greek, Bulgarian, Italian, German, Romanian, Latvian,

Lithuanian).

Finally, the SLNAE Core service will also implement an authentication and authorization

framework to support the Web Service API module by validating all incoming communications.

It will be based on the JSON Web Tokens2 (JWT) standard, which is an open, industry-standard

RFC-75193 method for representing claims securely between two parties. This framework will

be based on the flask-jwt4 and flask-jwt-extended5 Python libraries. A guest log-in mode will

be implemented but, although authenticated access will not be mandatory, some advanced

functionalities will only be available for registered users.

To simplify all the data flows and platform development, an object-oriented programming

paradigm will be integrated. Thus, the following software entities will be modelled and will be

available by other platform modules to implement its logic.

- CS: To represent the CS entity.

- Policy Goal: To represent the Policy Goal entity.

- Policy Target: To represent the Policy Target entity.

- Indicator: To represent the indicator entity, including WEFE footprint indicators.

- SDM: To represent the SDM entity.

- Simulation: To represent the simulation entity.

- Users: To represent the user entity.

2 https://jwt.io/
3 https://tools.ietf.org/html/rfc7519
4 https://pythonhosted.org/Flask-JWT/
5 https://flask-jwt-extended.readthedocs.io/en/stable/

https://jwt.io/
https://tools.ietf.org/html/rfc7519
https://pythonhosted.org/Flask-JWT/
https://flask-jwt-extended.readthedocs.io/en/stable/

D4.1 Self-learning nexus engine specifications and technical design

25 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

The expert programming principle will also be integrated, thus each software entity will

implement the necessary entity-related methods.

An ORM, implemented with SQLAlchemy6 Python library, will manage the mapping and

operations between SLNAE tool and NXG Data repositories.

5.2.2. Web Service API
The Web Service API provides the communication between the SLNAE GUI and the SLNAE

platform or backend. It is designed as a RESTful stateless service that implements a REST

(Representational State Transfer) architecture. The client-server communication uses JSON

(JavaScript Object Notation) data format over the HTTPS (Hypertext Transfer Protocol Secure)

protocol.

The Web Service endpoints listed in

Table 4 will be provided (FR-54).

Table 4. SLNAE Web Service endpoints

Web Service Endpoint
HTTP

methods

Requires

authenticated

JWT

Description

Request

parameters

/slnae/case_studies

/slnae/case_studies/id

GET No To obtain CSs’

information

CS ID

/slnae/policy_goals

/slnae/policy_goals/id

GET No To obtain default

Policy Goals and

targets

information

Policy Goal

ID

/slnae/indicators

/slnae/indicators/id

GET No To obtain default

CS and WEFE

footprint

indicators

information

Indicator ID

/slnae/policies

/slnae/policies/id

GET No To obtain

policies

information

Policy ID

/slnae/simulations

/slnae/simulations/id

/slnae/simulations/id/run

GET,

POST,

DELETE

Yes To manage

simulations

Simulation

parameters

/slnae/users GET, POST Yes Manage user’s

information and

profile

User’s

parameters

6 https://www.sqlalchemy.org/

https://www.sqlalchemy.org/

D4.1 Self-learning nexus engine specifications and technical design

26 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

/slnae/login POST No To validate

authentication

credentials and

generate JWT

Email and

encrypted

password

/slnae/logout GET Yes To sign out from

the session

/slnae/users GET, POST Yes Manage user’s

information and

profile

User’s

parameters

Additional endpoints will be added to the Web Service interface in case it is needed.

Finally, the Web Service will be deployed in the open-source HTTP Apache Server7 to provide

a secure, efficient and extensible tool that enables HTTP services in sync with the current HTTP

standards.

5.2.3. SLNAE database
An internal SQL database will provide persistence functionalities to store all the information

related to the SLNAE entities (FR-55). It will be managed by the ORM, which will

transparently implement all the CRUD (Create, Read, Update and Delete) methods and will

simplify their management.

The PostgreSQL8 open-source technology will be used for the implementation of this

component.

5.2.4. SLNAE GUI
The SLNAE GUI is the front view of the platform and will enable users to interact with the

NXG project research and outcomes. It will provide the required mechanisms to run WEFE

simulations by applying Nexus policies in each of the five NXG CSs. Furthermore, it will let

the user analyse the impacts on the interlinked nexus sectors, in terms of policy goals and WEFE

footprint indicators achievement, to finally understand which are the best policy packages in

each scenario.

Based on the identified requirements, sixteen views have been identified. The proposed SLNAE

GUI views flow is presented in Figure 4.

7 https://httpd.apache.org/
8 https://www.postgresql.org/

https://httpd.apache.org/
https://www.postgresql.org/

D4.1 Self-learning nexus engine specifications and technical design

27 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Figure 4. SLNAE GUI views Flow

The SLNAE GUI entry point is the Login page, where the user will be requested to log in (FR-

02). In case it is not registered yet, it will be able to access the Signup page to start the

registration process (FR-01), or to access the platform as a guest user (FR-04). Furthermore,

the Password recovery (FR-05) view is also accessible from the Login page. Also, information

regarding the data and cookie policies (FR-09) will be presented to the user on this initial page,

and an option to remember the credentials will be included in the login form.

Once logged in, the user will be redirected to the Main view (FR-10). Here, general information

about the NGX project will be presented. From this page, four possibilities are available to the

user. It can go to the Profile section (FR-06) where, in case it is registered into the system, the

user’s information is shown and can be modified (username, email). Also, in any case, the user

can select the platform language (FR-07).

The second option redirects the user to the CS area (FR-11 and FR-12), where specific

information and CSs’ characteristics will be displayed.

The third option is the Simulations Management view (FR-20), which will be always accessible

independently of the view (FR-14). It will present, in a table structure, all the simulations

previously saved by the user, and will have mechanisms to load (FR-22), see the results (FR-

21), rename (FR-24), duplicate (FR-25), compare (by selecting more than one entry, FR-26) or

General presentation of NXG tool concept and request for feedback to fulfill Jiu

Case Study needs

CS 1

CS 2

CS 3

CS 4

CS 5

Simulations
Management

view

Login

Simulations
Configuration

view

Simulations
Comparison

view

Sign up

Password
recovery

Profile

CSs area

Main view

Simulations
view

Simulations
Results view

D4.1 Self-learning nexus engine specifications and technical design

28 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

delete (FR-23) them. In case the user is not registered, only the simulations created during the

current user session will be presented.

Finally, the fourth option (which will be always accessible independently of the view, FR-13)

redirects the user to the Simulation Configuration (FR-18) view, a wizard-based page where

the user will be able to configure a new simulation. To do so, the user can select the CS and the

reference pathway, can activate the uncertainty mode, and can define a set of user-defined goals,

targets and WEFE and CSs indicators (FR-19). Once a simulation is configured, the Simulation

(FR-27) view, the main SLNAE functionality, will be presented to the user. Here, a dynamic

view will enable the user to interact with the WEFE simulation framework. The view will be

organized per sections, so the user always has visible the most important nexus information,

such as the time horizon, the policies goals level of achievement or the CS map. Moreover, in

order to have other information as available as possible, a flexible tabs schema is designed. The

following sections are proposed:

- Time horizon (FR-28): it will show the simulation step, from the year 2020 to the year

2050 in a year timestep. It will have functions to move forward or backward (FR-29) in

the simulation horizon time in user-defined timesteps (e.g. to advance four years, FR-

30). Additionally, the applied policies will be presented (FR-34) so the user can disapply

them (FR-33).

- Default policy goals, targets and WEFE footprint indicators (FR-39): will show the level

of achievement of the CS predefined policy goals, targets and WEFE footprint

indicators. Uncertainty in the computations will be shown in case it is requested.

- User-defined policy goals, targets and WEFE footprint indicators (FR-40): will show

the level of achievement of the user-defined policy goals, targets and WEFE footprint

indicators. Uncertainty in the computations will be shown in case it is requested.

- CS map: a central view to represent the CS (e.g. regional or transboundary case).

- Available tokens (FR-37): Information about available tokens will be always shown.

- Policies inventory (FR-31): It will present the available policies to be applied. Here, a

pop-up function will be used to show their information, and restrictions between them

will be also considered, thus the restricted ones will be hidden (FR-36, FR-38). From

there, a policy can be selected (FR-32) and configured (FR-35) to be applied at a specific

year.

- Indicators inventory: Other available indicators' levels of achievement will be

presented.

In parallel, the user can access the SLNAE DSS advice, which will provide support to identify

the most optimal policy packages. Advice focused on the maximization of default policy goals

(FR-43) will be immediately available, but advice targeting the user-defined policy goals (FR-

44) will require time for computation, thus the user will have to trigger it in case it is needed.

This second type of advice will present optimal policy packages as they are identified by the

DSS engine, and the user will be always aware of the computations.

Once the user considers that a simulation is finalized, the Simulation results view (FR-46)

presents a summary of the process. Here, two types of views are available: a basic view (FR-

47) and an advanced (FR-48) one. In the basic view, only applied policies and the indicator

level of achievement are presented. On the other hand, the advanced view presents all the Nexus

data and its evolution during the simulation (FR-50), considering also data uncertainty (FR-49).

D4.1 Self-learning nexus engine specifications and technical design

29 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

The details of the proposed functionalities and what and how data will be shown will be

discussed with SHs and documented in the final version of this deliverable.

Finally, the user will be asked whether the simulation has to be stored (FR-42) or not for future

usage (e.g. in a comparison). The way how simulations will be compared in the Comparison

view (FR-51) will be also discussed with SHs. At least, comparisons among simulations

corresponding to the same CS (FR-52) will be enabled by comparing the default goals, and

comparisons among different CS simulations (FR-53) will be enabled by comparing the

common WEFE footprint indicators.

The iteration and finalization of SLNAE GUI functionalities and design is the main WP4 target

for workshops WS2 and WS3. In WS2, the current design will be presented to the SHs, and

first feedback and ideas are expected. On this basis, WP4 will proceed to develop the required

mockups to graphically describe the GUI views. Then, in the WS3, these mockups will be

presented to the SHs to have a final discussion and feedback. All these decisions will be

incorporated into the final version of this deliverable.

HTML, JS and CSS will be used to build the GUI, and the following frameworks are identified

to implement the proposed functionalities:

- Angular9: Framework for web applications development.

- JWT10: Library for representing claims securely between two parties using industry

standard RFC 7519.

- D311: a JavaScript library for manipulating documents based on data.

- Leaflet12: a JavaScript library for friendly interactive maps.

5.2.5. Self-learning engine and AI algorithms
The self-learning engine is considered the core of the SLNAE platform and one of the most

important research, development, and outcome of the NXG project. The self-learning engine

will be used as a recommendation tool for decision making in i) policy package definition

during the project, and ii) policy package advice in the final online tool.

In the first case, the self-learning engine will be used in the co-creation framework cycle to

generate optimal policy packages given a set of policies and policy goals and targets defined

by the SHs in each CS. Once generated, the identified policy packages will be evaluated by the

SHs and a new learning iteration will be carried out if possible (at least in frontrunner CSs).

9 https://angular.io/
10 https://jwt.io/
11 https://d3js.org/
12 https://leafletjs.com/

https://angular.io/
https://jwt.io/
https://d3js.org/
https://leafletjs.com/

D4.1 Self-learning nexus engine specifications and technical design

30 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Figure 5. NXG co-creation framework for Nexus Policy packages identification

The second case refers to the online DSS, which will provide policy package advice to the

platform users. As it is introduced in the previous section, the users will be provided with two

types of advice. The first one will be focused to accomplish CS predefined goals and targets,

which will be based on the outputs of the co-creation framework for policy governance.

The policy package identification task can be understood as an optimal control problem, where

decisions have to be made along time to select policy packages with the aim to achieve (or

maximize) certain metrics, such as policy goals targets or WEFE footprint indicators, at a

certain instant of time.

Given the considerable number of policy combinations, the scenario restrictions (e.g. budgets

or allowed policy combinations), the huge quantity of instants when a decision can be made, or

the underlying complexity and non-linearity of the problem, its solution is non-trivial.

Moreover, if data uncertainty is taken into account, the problem becomes non-deterministic,

thus it is even more difficult to confront.

Below, the algorithmic methodology proposed to implement the self-learning engine is

presented. It is based on the definition and self-training of a set of intelligent AI-powered

agents. Once trained, these agents will be able to find the most efficient ways for decision-

making in dynamic and uncertain systems based on cost function definitions that represent the

nexus concerns and desired policy goals.

We propose Reinforcement Learning (RL) [3], a hybrid family of algorithms between control

theory and AI, to deal with the task of decision-making in policy packages application for

achieving different targets (goals). Moreover, taking into account the problem complexity, it

becomes also necessary to include function approximations able to deal with it. In this scenario,

Deep Learning (DL) provides the required power and capabilities to deal with non-linearities

and high-dimensional tasks. As a result, the Deep Reinforcement Learning family of algorithms

is proposed.

5.2.5.1. MDP formalization

In the control problem scenario, the task is formalized as a Markov Decision Process (MDP).

An MDP provides a mathematical framework for modelling decision-making in a sequential,

stochastic, and discrete-time environment.

Definition of Nexus Policies
and Targets

(WP1 & SHs)

Integration of Nexus
Policies and Indicators into
Complexity Science tools

(WP2 & WP3)

Identification of optimal
Nexus Policy packages

(WP4)

Evaluation of proposed
policy packages

(WP1 & SHs)

D4.1 Self-learning nexus engine specifications and technical design

31 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

The formalization consists of a 5-tuple:

• A set of states 𝑆

• A set of actions 𝐴

• A scalar reward function 𝑅 ⊂ ℝ that maps state-action pairs to scalar values (a reward

signal)

• A state transition probability distribution 𝑃 that defines the dynamics of the MDP; from

all states 𝑠 ∈ 𝑆 to all their successors 𝑠′ ∈ 𝑆

• A discounted factor 𝛾 ∈ [0,1], allows weighing the importance of future rewards over

current ones

Theoretically, in its basic form, the Nexus policy-decision-making problem can be

mathematically formalized as a fully observable MDP, where the dynamic transitions are given

by the SDMs.

• The MDP state must be correctly designed and must contain all the required information

from the SDMs (the nexus WEFE) to ensure that the DSS models can provide consistent

recommendations by identifying the necessities in each situation. In each CS, it will be

discussed with experts to identify which are the key parameters. Additionally, other

information must be considered, such as the year, the policies state, or the available

tokens.

• The action space defines the decisions to be taken in the environment. The decision-

making is based on discrete actions defined by the available policy packages in a given

year (a combination of policies).

• The design of the reward function is one of the most complex parts of the MDP

definition since it must guide the agent to the right path. The reward function will be

based on the selected policy targets and WEFE indicators to achieve the policy goals.

Usually, there will be more than one indicator to consider given a multi-objective

problem. More than one expression has to be taken into account to accurately define the

reward function. This implies balancing the relative importance of each concept and

multiple indicators will be aggregated to a general one.

Given an MDP, the random variables 𝑠′ and r depend on the preceding state and action. That
is, the probability of those variables occurring at the same time 𝑡 is conditioned on the previous
state 𝑠 ∈ 𝑆 and the action 𝑎 ∈ 𝐴 taken, as defined in the following equation:

𝑝(𝑠′, 𝑟|𝑠, 𝑎) ≐ Pr{𝑆𝑡 = 𝑠′, 𝑅𝑡 = 𝑟|𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎}

for all 𝑠′, 𝑠 ∈ 𝑆, 𝑟 ∈ 𝑅 and 𝑎 ∈ 𝐴. In this case, the Markov property is achieved. Recall that the
objective of an MDP is to maximize the expected discounted cumulative reward in a trajectory.
A sequence of transitions, such as {𝑆0, 𝐴0, 𝑆1, 𝑅1, 𝐴1, 𝑆2, 𝑅2, 𝐴2, 𝑆3, 𝑅3, … , 𝑆T−1, 𝐴T−1, 𝑆𝑇 , 𝑅T},
defines a trajectory through the MDP. The equation below defines the expected reward in an
episodic MDP.

𝐺𝑡 ≐ 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+2 + ⋯ = ∑ 𝛾𝑘𝑅𝑡+𝑘+1 =

𝑇−𝑡−1

𝑘=0

𝑅𝑡+1 + 𝛾𝐺𝑡+1

where T corresponds to the last time-step of the episode. Timestep T leads to terminal states.

D4.1 Self-learning nexus engine specifications and technical design

32 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

5.2.5.2. Reinforcement Learning

RL is a computational approach in the ML (AI) field that provides support in MDP systems by

trial-and-error learning guided by the expected cumulative future reward. The RL model's aim

is to learn what action to do in a given state with the final goal of maximizing the numerical

reward function [3]. An RL model is a function that maps states to actions based on experience.

Solving an RL task means finding a policy π that maximizes the reward signal over the long

run. Most RL algorithms involve estimating value functions that estimate how good it is for the

agent to be in a given state, or how good it is to perform a given action in a given state.

In the learning process, the decision-maker is called the agent, and the thing it interacts with is

the environment. These elements interact continuously through an iterative process where the

agent selects actions, and the environment responds to these actions with reward signals and

presents new situations to the agent. During this training process, the agent continuously

improves a policy to maximize the expected future reward over time through its choice of

actions. The ultimate goal of the agent is to learn a policy π that maps states to actions with the

aim of generating the highest cumulative reward through the agent-environment interaction.

The iterative agent-environment interaction process is shown in Figure 6.

Figure 6. Reinforcement Learning interaction flow

The self-training process is described as follows:

For all defined iterations, at each timestep 𝑡:

1. The agent observes the current state of the environment 𝑆𝑡

2. The agent chooses an action 𝐴𝑡 in the given state 𝑆𝑡

3. This action and the system dynamics cause a transition between states in the

environment. A reward signal 𝑅𝑡+1 based on the consequences of the action taken and

the stochasticity of the MDP is provided to the agent. Moreover, the next discrete-time

state, 𝑆𝑡+1, is also given to the agent in order to provide the current situation of the

system.

4. The agent updates the policy π based on the previous interaction with the environment,

denoted by the transition tuple < 𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1, 𝑅𝑡+1 >

5. The current state 𝑆𝑡 from the environment is updated with the new one 𝑆𝑡+1

6. Go back to step 1. The process starts again until the number of iterations is completed

Standard RL maximizes the expected sum of rewards as presented below:

∑ 𝔼(𝑆𝑡,𝐴𝑡)~𝜌𝜋
[𝑅(𝑆𝑡, 𝐴𝑡

𝑡
)]

In the previous equation 𝜌𝜋 denotes the transitions following policy 𝜋.

D4.1 Self-learning nexus engine specifications and technical design

33 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Dynamic Programming [4] and Monte Carlo [5] methods are considered basic forms of RL,

since both provide (restricted and limited) solutions to the MDP problem. One of the most

popular tabular RL algorithms is Q-Learning [6], a temporal-difference [7] RL methodology.

The classical Q-Learning algorithm learns a state-action value function by trial-and-error. The

state-action pair values are updated on every new iteration. These values represent the expected

future reward from being on each state-action pair in the environment and are used to know

which decision has the higher expectation.

During the training phase, unknown states are visited to allow exploration and approximate the

values in the so-called Q-table. There is an exploration and exploitation dilemma during the

training phases. While the RL agent is learning expected value and making decisions in the

environment based on that, the agent must also explore other alternatives to correct any

deviation in the Q-function. Therefore, during data collection in agent-environment

interactions, the agent will balance the selection of random action with the selection of the best-

known action.

One of the major challenges in RL is the right reward function definition that must guide the

agent in the right learning direction. An example of a simple reward function is the following:

𝑅(𝑆) = {
0, 𝑆 𝑛𝑜𝑡 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙
0, 𝑆 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑎𝑛𝑑 𝑔𝑜𝑎𝑙𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑
1, 𝑆 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑎𝑛𝑑 𝑔𝑜𝑎𝑙𝑠 𝑎𝑟𝑒 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑

This reward function is sparse since for all states that are not terminal it is 0, and it is different

than 0 when all goals are achieved in a terminal state. Therefore, there are two main problems

in the reward function definition: reward sparsity and credit assignment problems. This second

issue is related to the difficulty to identify which actions, in an MDP trajectory, guide the system

to the best or poor rewards.

Q-Learning, such as other tabular RL methods, have some limitations:

• The agent needs a lot of interactions with the environment to approximate well the value

function and learn an acceptable policy π. If SDMs are slow, the learning will be also

slow. Thus, python SDMs must be optimized to give transitions in the lowest time

possible.

• The action space can be very complex to manage for classical RL. If the number of

available combinations of policies at each step is very big, learning all state-action

values in a tabular form becomes very challenging and even unfeasible.

• Similarly, a high-dimensional or continuous state space is not feasible to consider in

tabular algorithms.

In its classical tabular approach, RL is not able to deal with high-dimensional and non-linear

problems due to the curse of dimensionality, which is the exponential growth of states and

actions when the problem has a high-dimensional or continuous state and/or action spaces. In

order to overcome these limitations, RL methodologies have been recently combined with DL

techniques to generate the so-called Deep Reinforcement Learning (DRL) algorithms family.

Here, Deep Neural Networks (NN) represent the agent’s policy and are used as a function

approximator of the complexity behind the state and action spaces.

5.2.5.3. Deep Reinforcement Learning

DRL is the result of combining Deep Neural Networks (DNN – DL) together with RL where

the tabular functions are substituted by DNN. In these types of algorithms, information is not

D4.1 Self-learning nexus engine specifications and technical design

34 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

explicitly stored for every single state or every state-action pair. What it is done here, is a more

compact representation that generalizes across states or states and actions. It reduces the

resources needed to store all the information, computation, and experience needed to converge

to a reasonable solution in larger problems, even when the state space is continuous. For an n-

dimensional state space and a discrete action space containing m actions:

• A neural network that defines the state-action value function is a function from 𝑅𝑛 𝑥 𝑚

to 𝑅

• A neural network that defines the policy function is a function from 𝑅𝑛 to 𝑅𝑚

There are three main types of DRL algorithms, as in RL:

• Value-based: the algorithm learns the value function V or Q, or the advantage function

A.

• Policy-based: the algorithm learns the policy function directly.

• Actor-critic: Actor–critic algorithms learn both, policies, and value functions. The actor

is the parametric policy, and the critic learns value approximations in order to criticize

the behaviour of the actor in such a way that the actor can more efficiently learn. Actor-

critic algorithms allow high-dimensional and continuous action spaces, unlike value-

based algorithms.

Value-based methods

Under the value-based category, Deep Q-Learning (DQN) is the first implementation of the Q-

Learning algorithm to DL. In this case, instead of learning a value per each state-action pair as

it is done in Q-Learning, the DNN has as input the state and outputs a probability per each

action from the action space. Therefore, the DNN learns a Q-value probability per each action

given a state.

RL is known to be unstable, or divergent, when a nonlinear function approximator, such as a

neural network, is used to represent the state-action value function [8]. This instability comes

from i) the correlations present in the sequence of observations, ii) the fact that small updates

to Q may significantly change the policy and the data distribution and, iii) the correlations

between Q and the target values 𝛾 𝑚𝑎𝑥𝑎𝑡+1
𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1).

To face these issues, two techniques have been developed. The first one, called experience

replay [9], uses a random sample of prior actions instead of the most recent action to proceed.

This removes correlations in the observation sequence and smooths changes in the data

distribution. In the second, iterative updates adjust Q towards target values that are only

periodically updated, further reducing correlations with the target [10].

GoRiLa [11] (General Reinforcement Learning Architecture) adds parallelization to the DQN

algorithms, thus achieving a massively distributed version of it. DQRN [12] (Deep Recurrent

Q-Network), introduces the capabilities of Recurrent Neural Network architectures, through the

addition LSTM (Long Short Term Memory) DNN layers, allowing the agent the ability to

remember a bigger picture of the environment.

The max operator in standard Q-learning and DQN uses the same values both to select and to

evaluate an action. This makes it more likely to select overestimated values, resulting in

overoptimistic value estimates. To prevent this, the selection from the evaluation can be

decoupled. In Double Q-learning [13] (Double DQN), two value functions are learned by

D4.1 Self-learning nexus engine specifications and technical design

35 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

assigning experiences randomly to update one of the two value functions, resulting in two sets

of weights, w and w’. For each update, one set of weights is used to determine the greedy policy

and the other to determine its value. The idea of Double Q-learning is to reduce overestimations

and although not fully decoupled, the target network in the DQN architecture provides a natural

candidate for the second value function, without having to introduce additional networks [14].

With experience stored in a replay memory, it becomes possible to break the temporal

correlations by mixing more and less recent experiences for the updates, and rare experiences

will be used for more than just a single update. However, an RL agent can learn more effectively

from some transitions than from others. Therefore, prioritizing which transitions are replayed

can make experience replay more efficient and effective than if all transitions are replayed

uniformly. Prioritized experience replay [15] is built on top of DDQN further improving the

state-of-the-art.

A Dueling network architecture [16] explicitly separates the representation of state values and

(state-dependent) action advantages as it consists of two streams that represent the state value

function and the advantage function, while sharing a common convolutional feature learning

module.

𝑄(s, 𝑎) = 𝑉(𝑠) + 𝐴(𝑠, 𝑎)

This dueling network should be understood as a single network where two streams are

combined via a special aggregating layer to produce an estimate of the state-action value

function, thus replacing the popular single-stream state-action value network in other existing

algorithms such as DQN. The advantage function 𝐴 shows how advantageous taking action a

is relative to the others at a given state s. This change is helpful, because sometimes it is

unnecessary to know the exact value of each action, so just learning the state-value function

can be enough in some cases.

When we have to deal with continuous action spaces, an obvious approach to adapting DRL

methods such as DQN to continuous domains is to simply discretize the action space. However,

this has many limitations, most notably the curse of dimensionality: the number of actions

increases exponentially with the number of degrees of freedom. In the continuous control

domain, where actions are continuous and often high-dimensional, we argue that the existing

control benchmarks fail to provide a comprehensive set of challenging problems. The situation

is even worse for tasks that require fine control of actions as they require a correspondingly

finer-grained discretization, leading to an explosion of the number of discrete actions. Such

large action spaces are difficult to explore efficiently, and thus successfully training DQN-like

networks in this context is likely intractable. Additionally, naive discretization of action spaces

needlessly throws away information about the structure of the action domain, which may be

essential for solving many problems [17][18].

Policy-based methods

Value-based methods work with discrete and finite action spaces, thus, it is possible to calculate

the maximum value over all possible actions in each state. If a high-dimensional action space

is considered, this maximum value over all possible actions may become computationally

expensive, or even impossible in continuous action spaces. Moreover, sometimes value

functions give too much information for the task of selecting an optimal policy and it makes

D4.1 Self-learning nexus engine specifications and technical design

36 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

harder the training process, since it is unnecessary to compute the exact value for each state or

each pair action-state.

Policy-based methods can learn easily stochastic policies, thus, do not need to force exploration

with some probability to ensure optimality, as it is done in value-based methods, given that the

exploration is embedded in the learned function which ultimately converges to a deterministic

policy. However, in order to improve learning strategies in policy gradient methods, much

research focused on exploration is being carried out. In particular, [19] proposed two

exploration techniques to address the limitations of gradient methods and [20] introduced a

state-dependent exploration function that, during an episode, returns the same action for any

given state resulting in less variance per episode and faster convergence.

REINFORCE is a Monte-Carlo variant of policy gradient methods, thus since one full trajectory

must be completed to construct a sample space, it is an off-policy method. The agent collects a

trajectory of an episode using its policy and uses its results to update the policy. This method

suffers from high variance and low convergence even though it gives unbiased estimates. To

improve performance, a widely used variation of REINFORCE is to subtract a baseline to

reduce the variance of the gradient estimation. For instance, the advantage of an action in a

given state, while keeping the bias unchanged. It is similar to what is done in dueling networks

from the value-based methods.

Updating the weights of a neural network repeatedly for a batch, pushes the policy function far

away from its initial estimation. To limit this issue, Trust Region Policy Optimization [22]

(TRPO) methods update the policy function, but do not allow it to change much from the

previous policy, by introducing a constraint for it. Given that TRPO is relatively complicated,

Proximal Policy Optimization [23] (PPO) simplifies it by using a clipped surrogate objective

while retaining similar performance and using multiple epochs of stochastic gradient ascent to

perform each policy update. These modified methods have the stability and reliability of trust-

region methods but are much simpler to implement. The most common implementation of PPO

is via the Actor-Critic Model introduced below.

Actor-critic methods

As the critic network learns which states are better or worse, the actor uses this information to

teach the agent to seek out good states and avoid bad states.

The Advantage Actor Critic [24] (A2C) algorithm uses a state-dependent baseline which is the

expected advantage of an action in a given state reducing the variance of the gradient

𝐴(𝑠, 𝑎) = 𝑄(s, 𝑎) − 𝑉(𝑠)

Therefore, the critic will have to approximate two different functions: 𝑄(s, 𝑎) and 𝑉(𝑠). This

algorithm is not very different in essence from REINFORCE, since it follows similar steps:

sample transitions, compute the return and update the policy. However, in this method episodes

do not need to be finite since A2C relies on the n-step updating approach, where the critic has

to be learned in parallel. The actor and critic are stored in a global network and multiple

instances of the environment are created in different parallel threads, representing the different

actor-learners. All learners sample an episode starting with the actor and critic weights from

the global networks and the global networks merge the gradients computed by each learner

updating the parameters of the policy and critic networks. The learners continue training on

new episodes with the updated global weights until convergence. A2C is a synchronous and

D4.1 Self-learning nexus engine specifications and technical design

37 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

deterministic version of Asynchronous Advantage Actor-Critic [25] (A3C), where learners are

fully independent, thus they only communicate through asynchronous updating of the global

networks. Hence, A3C is designed to work very efficiently for parallel training. However, the

fact that in A3C each learner talks to the global parameters independently may lead to learners

playing with different versions of the network weights and, therefore, the aggregated update

would not be optimal. Aversely, A2C ensures the same starting weights for all learnings by

waiting for all the parallel actors to finish their work before updating the global parameters.

These previous methods are modelling the policy function as a probability distribution,

however, there are other methods that consider and calculate the policy as a deterministic

decision such as Deterministic Policy Gradient [26] (DPG). In the stochastic case, the policy

gradient integrates over both state and action spaces, whereas in the deterministic case it only

integrates over the state space. As a result, computing the stochastic policy gradient may require

more samples, especially if the action space has many dimensions. Deep Deterministic Policy

Gradient [27] (DDPG) is an actor-critic algorithm that combines DPG and DQN.

Soft Actor Critic [28] (SAC) incorporates the entropy measure of the policy into the reward to

encourage exploration. It is an off-policy actor-critic algorithm following the maximum entropy

RL framework. It optimizes a stochastic policy trained to maximize a trade-off between

expected return and entropy, which is a measure of randomness in the policy. Increasing

entropy results in more exploration, which can accelerate learning later on. It can also prevent

the policy from prematurely converging to a bad local optimum. A precedent work is Soft Q-

Learning [29].

5.2.5.4. Challenges of DRL application in the NXG context

The application of the aforementioned mechanisms is not trivial, and many research challenges

raise in the WEFE decision-policy-making context. During the project, in the co-creation cyclic

framework for policy governance, DRL agents will be trained based on a policies set and targets

defined by the SHs. As a result, apart from the generated optimal policy packages, a set of

trained agents will be available.

Later, these agents will be used in the SLNAE DSS for real-time advice focusing on the default

CSs’ targets, those targets used in its previous training. The second type of advice, that focused

on the achievement of user-defined targets, will be more complex and time-consuming to be

provided, since it requires a new online computation (i.e. an agent training).

Below, the identified challenges and the proposed solutions are presented:

- High-dimensional and non-linear tasks: Application of DRL algorithms.

- SDMs slow sample rate: complex SDMs lead to slow simulation cycle time, thus ending

with slow learning when it is used in the RL interaction flow. To avoid it, efficient code

libraries or even parallel programming will be used when translating SDMs from the Stella

modelling framework.

- Complex action-space due to many policy combinations (policy packages): Policy Gradient

or Actor-Critic DRL techniques will be used.

- Real-time optimization and advice for user-defined targets advice: taking advantage of the

available pre-trained agents, Transfer Learning techniques [30] will be used to generate a

base knowledge. With it, the required time in the agent's learning stage will be considerably

reduced. The selected base agents will be those that have been trained with similar targets.

D4.1 Self-learning nexus engine specifications and technical design

38 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

- Multiobjective problem: Many WEFE policy-making scenarios can be proposed and

analysed, which may result in different policy packages generation. For example, in

transboundary CSs decisions can be made in a collaborative manner, thus taking into

account the objectives of all entities at once. The opposite way is to independently consider

the implicated entities and analyze which are the impact of upstream decisions in

downstream cases. Also, other analyses can be run by separating the WEFE sectors, where

different entities focus separately on their objectives. To do so, multi-agent systems are

proposed, and collaborative vs no collaborative scenarios will be investigated.

- Reward sparsity and credit assignment problems: research on these issues will be carried

out during the project.

5.2.5.5. Other algorithms, mechanisms and system

benchmark

The objective of the AI part of the SLNAE tool is to get good models to support the decision-

making by recommending favourable policy packages based on defined goals. This is a

combinatorial optimization problem. The function to be maximized is the aggregation of

indicators that will be co-defined to assess the policy goals achievement. Based on this function,

it will be sought which policies are advised to consider and at what moment in time in the

defined time horizon.

In combinatorial optimization, the optimal solution must be identified from a large set of

possible solutions that cannot usually be calculated one by one, since it would have a too high

computational cost. Mathematical optimization such as linear programming and metaheuristics

have been widely used to solve combinatorial optimization problems. In very complex

problems, mathematical optimization methods can take too long to obtain optimal solutions.

Therefore, in these situations, metaheuristic methods are commonly applied since they can

obtain pretty good solutions in a reasonable time. However, metaheuristic algorithms can get

stuck in local optimums and cannot guarantee an optimal result. Moreover, algorithms must be

executed taking some time every time a new recommendation is needed in a given

configuration. These may difficult the exploration of different policy package alternatives

through an MDP. Classical optimization solutions are considered offline, require complete and

previous knowledge of the environment dynamics, and are not always able to react to

unexpected changes and handle uncertainties favourably. Thus, to better control complex and

changing systems under uncertainties, more adaptive control is needed.

To overcome this last drawback, RL models will be trained on all predefined MDP to facilitate

the end-user interaction with the support models of the tool. RL represents a set of solutions

that do not previously need to know any information about the system dynamics, in contrast

with other traditional control and optimization techniques, and give immediate real-time

answers to any faced situation. The adaptive and immediacy nature of RL methods offers great

potential to be used as a decision support system or to directly manage, in an autonomous

manner, decision processes since RL can generalize to unseen situations. As has been explained

before, the RL models are trained offline based on a reward signal that guides the learning by

telling the decision model how good the decisions have been taken in previous states or

situations. The RL methodology is proposed given that the solution space is so big that all

D4.1 Self-learning nexus engine specifications and technical design

39 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

solutions cannot be tested to find the one that better fits the end-user aims. Therefore, an

exhaustive search is not an option. In the case of non-predefined MDP, i.e., user-defined targets,

RL models will be trained online given the configuration of the simulations to give

recommendations on policy packages in the different defined steps from the time horizon.

How do we know that the RL recommendations are favourable given the policy goals defined

by the users? Model validation will be done in two ways:

• Domain expert validation: RL recommendations will be evaluated by domain experts

and SHs in the co-creation framework workflow, in order to assess whether the

recommendations are aligned with the requirements and needs of each CS and provide

added value to the potential users of the SLNAE tool.

• Benchmark with metaheuristics: Different scenarios will be executed with other control

and optimization techniques in order to compare the results with the RL

recommendations. These benchmarks will assess the predictive quality of the control

models. Metaheuristic models such as Particle Swarm Optimization [31], Genetic

algorithms [32], or Simulated Annealing [33] combined with local search algorithms

will be evaluated. Even though metaheuristics are not real-time and adaptable system

solutions as RL provides, traditional optimization algorithms can yield good sequential

solutions. Moreover, these searching techniques will be considered to support the RL

decision-making models. Different options will be examined:

• RL vs metaheuristics (e.g., RL models on predefined MDP and metaheuristics

on user-defined MDP)

• Hybrid recommendation system

• Benchmark with other algorithms: For instance, the Tree Parzen Estimator [34], which

is a sequential model-based optimization algorithm that uses Bayesian reasoning.

5.2.6. DSS
The SLNAE DSS will provide policy package advice to the platform users. Depending on the

required recommendations, it will access the pre-trained agents, or it will trigger a new training

session as explained in the previous section.

In the first case, real-time advice for default CS goals achievement is assured since the agents

are already available. In the second case, a new training stage will be launched, and newly

identified optimal policy packages will be continuously presented to the user. Furthermore,

these new agents will be persisted and added to the already available set of agents to be used in

future scenarios, thus reducing the next training times.

5.2.7. Simulation Policy Framework
In WP3, the CSs’ SDMs are developed using Stella software, a visual programming language

for system dynamics modelling introduced in 1985 by Barry Richmond, which enables the

definition of stock and flow variables, converters, connectors and other components. Here,

SDMs embed also policy effects and low-level nexus indicators.

Due to its format, it cannot be directly integrated nor executed by the SLNAE platform, thus it

has to be previously translated into a more convenient programming language. To do so, the

Simulation Policy Framework service develops a translation process that takes the SDMs in

Stella format as an input, and integrates them into the SLNAE. This procedure is based on the

D4.1 Self-learning nexus engine specifications and technical design

40 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

methodology implemented in the H2020 Sim4Nexus project, and proposes various

improvements based on the lessons learned there.

Once a new SDM is available, the following automatic flow is triggered:

• Variable names are validated against the NGX Variables Inventory, and later translated

to Python nomenclature.

• Constant data is extracted and loaded into a specific and isolated data structure.

• Time series data is extracted and loaded into a specific and isolated data structure.

• Equations are extracted and loaded into a specific and isolated structure.

• Initial stocks are extracted and loaded into a specific and isolated data structure.

• Based on the previous data structures, the Python SDM is defined.

• The Python SDM is executed from the first year till 2050 to check its correctness.

• The outputs are validated monthly against a validation data set.

• The Python SDM is executed from the first year till 2050 with some applied policies to

check its correctness.

• The outputs are validated monthly against a validation data set.

Once ready, the SDMs are included in the SLNAE system to be used by other platform

components, such as the self-learning engine.

Additionally, the Simulation Policy Framework also integrates policy, goals, targets and

WEFE indicators information to control its logic. These data are available in the NXG Data

Sharing Tools.

5.2.8. Analytical Engine
The analytical engine will support other technical SLNAE components in the analytical

computation tasks. For example, it will enable access to Hardware resources such as CPU or

GPU, and will incorporate all the required Python libraries for the DRL agents’ training

(Tensorflow13 or Pytorch14).

Additionally, it will also incorporate other data analytics pipelines in order to process the NGX

data.

5.3. Nexogenesis Data sharing tools
Smooth and dynamic communication between WPs is crucial for the success of the NXG

project. In this context, several complex and high dependent cross-WP data pipelines have been

identified (Figure 8). This issue enforces not only the initial requisite of having to define a

specific and well-defined plan to manage it, e.g. the NXG co-creation framework, but also the

necessity of digital services able to act as a bridge between them.

In WP4, task T4.2 is aimed to implement a data-sharing platform able to fill this gap and provide

the required support to final users, considering both internal NXG project requirements and

external users’ necessities. In this scenario, it has been required to identify the roles of data

providers and data consumers among the project WPs. Those WPs that, among its objectives,

have to generate data to be used by other WPs in the project data pipeline are considered data

13 https://www.tensorflow.org/
14 https://pytorch.org/

https://www.tensorflow.org/
https://pytorch.org/

D4.1 Self-learning nexus engine specifications and technical design

41 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

providers. Extensively, in a similar way, those WPs that require and use other WPs’ outcomes

in order to accomplish their tasks are considered data consumers, Finally, in this schema, a WP

can be at the same time both data consumer and data provider, as is the case of the WP3. Figure

7 presents this classification, and further details are introduced in the next section.

Additionally, task T4.2 also comprises all those services to harmonize the NXG data and make

it available to the general public. In the previous roles classification, the general public is

considered a special case of a data consumer.

Figure 7. Nexogenesis data pipeline

Depending on the final use of the data, these are available via a specific tool in the NXG Data

Sharing Platform. In a first stage, data is used internally by the WPs with the final objective to

develop the nexus complexity models (the SDMs) and ultimately the SLNAE service. To this

goal, the NXG Internal Data Repository (IDR) is implemented. Second, complying with the

Open Data policy and the DMP, data is harmonized and published (when it is possible) in an

online Semantic Repository for public open access.

The following sections describe the designs of such data-sharing tools based on the identified

requirements.

5.3.1. Internal Data Repository

During the NXG project, many datasets are, and will be, created and updated. This process is

being directly monitored by the DMP, but will be also supported by the NXG Internal Data

Repository. In this case, the IDR will act as a digital platform to enable efficient cross-WP data

sharing among data providers and data consumers.

Given the elevated number of datasets that have to be shared among WPs, this data exchange

may become difficult to coordinate. Thus in order to avoid point-to-point (WP-to-WP)

Nexogenesis Data Sharing Tools

WP1 & SHs WP2 WP3 WP5 & CSsData providers

WP3 WP4 Final usersData consumers

Internal Data
Repository

Semantic
Repository

D4.1 Self-learning nexus engine specifications and technical design

42 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

communication, lessons learned from Sim4Nexus project (where similar requirements were not

correctly addressed) demonstrated the utmost importance of this kind of tools.

Figure 8. NXG cross-WP data pipelines in the Internal Data Repository

From the proposed use cases, the data pipeline represented in Figure 8 is extracted. This pipeline

represents the data flows and data dependencies between WPs in the NXG project. WP1 & SHs,

WP2 and WP5 & CSs have the role of data providers, WP4 is a data consumer, and WP3 has

both roles at the same time. Details regarding data flow, data and data formats are presented in

Table 5.

Table 5.Internal Data Repository data, data formats, data flows, and description

Data Data format Data

provider

Data

consumers

Description

Nexus Policies Excel file per

CS

WP1 &

SHs and

WP5 &

CSs

WP3 & WP4 To be used by WP3 when including

policies in the SDMs, and by WP4 to build

SLNAE and to show policies information

in the UI

Policy Goals,

Policy Targets,

Indicators, etc

Excel file per

CS

WP1 &

SHs and

WP5 &

CSs

WP3 & WP4 To be used by WP3 to compute low-level

indicators in the SDMs, and by WP4 to

build SLNAE and to show information in

the UI

WP1 & SHs

WP2 WP4

Nexus policies

Nexus indicators

WP3
Reference pathway
simulations

WP5 & CSs

CSs metadata

CSs translations

SDMs and
validation data

Nexus Policy Goals and Policy Targets

WP5 & CSs

D4.1 Self-learning nexus engine specifications and technical design

43 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Biophysical

and socio-

economic

modelling

(Reference

Pathways)

simulations

Excel file per

CS and RP

WP2 WP3 To be used by WP3 to develop the SDMs.

A specific folder structure will be used to

organize these datasets.

SDMs .stmx per CS

and RP

WP3 WP4 To be used by WP4 for the SDM

translation and integration to the SLNAE

SDMs

execution

outputs

Excel file per

CS, RP and

specific policy

package

WP3 WP4 To be used by WP4 to validate an SDM

translation

WEFE

footprint

indicators

Excel file per

CS

WP1 &

SHs,

WP3 and

WP5 &

CSs

WP4 To be used by WP3 to compute low-level

indicators in the SDMs, and by WP4 to

build SLNAE and to show information in

the UI

Case Study

metadata

Excel file per

CS

WP5 &

CSs

WP4 To be used by WP4 to show CS info in the

UI

Translations Excel file per

CS

WP5 &

CSs

WP4 To be used by WP4 to show CS info in

different languages

The technology proposed to implement the NXG IDR is Microsoft OneDrive15. The main

restriction that guided this design decision is the fact that, generally, the project partners that

have to use this tool have no IT knowledge. In this scenario, advanced SQL or NoSQL

repositories are not allowed, due to the skills required to work with them. Furthermore, the

superior functionalities that these technologies provide have not been identified among the IDR

requirements (DST-1 to DST-9).

The NXG OneDrive space will be structured by folders, being the top-level group of folders

organized per CSs. The second level, in each CS folder, will have one folder per data type

identified in Table 5. The data types SDMs and SDMs execution outputs are an exception, and

will be put in the same folder due to their inter-dependence. Each data provider will be in charge

to manage their own data in each sub-space. The data files will follow a versioning convention,

starting in version 0.1, and increasing the minor version (0.x) until a big change is added to the

data. In this case, the major version (x.0) will be increased. Minor versions will be used when

minimal modifications or issues corrections are applied, and changes in major versions will be

devoted to representing important improvements. When a new data file is uploaded, the old file

will be moved into a folder named _old, which will store all the previous versions of that file.

Additionally, at the same time, an history.xls file (available at folder level) will be updated by

adding a new entry for that new version, and a description regarding the included modifications

and the name of the person who did the upload. This history file will be used to have a global

15 https://www.microsoft.com/es-es/microsoft-365/onedrive/online-cloud-storage

https://www.microsoft.com/es-es/microsoft-365/onedrive/online-cloud-storage

D4.1 Self-learning nexus engine specifications and technical design

44 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

idea and keep track of the data modifications. All these rules are considered the NXG IDR

protocol.

In those cases where the data format is excel, the structure and content on the file will be agreed

upon among data providers and data consumers. The names of each file will be also

standardized.

Based on this structure, the IDR will be deployed and hosted in the EURECAT digital premises.

EURECAT, the T4.2 leader, will take the role of the system manager, and will administrate the

repository. Mainly, three actions are required in this aspect:

1. Administrate the access to project members.

2. Ensure the correct application of the IDR protocol.

3. Solve any possible issues.

Regarding the access topic, a document (e.g. excel file) will be created and maintained to keep

track of enabled permissions. By default, Microsoft OneDrive provides security via a log-in

service, and access can be enabled by adding accounts to the shared space.

D4.1 Self-learning nexus engine specifications and technical design

45 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

6. Conclusions
The present document establishes the basis for the SLNAE design, which will be iterated during

the first half of the project to finally consider the SHs necessities. Mainly, this feedback will be

obtained during the second and third CSs workshops (2nd year of the project), where a deeper

discussion on these topics will be proposed, since the first WS was presented as a project

introduction.

In this context, some technical details have to be decided, such as the GUI functionalities, how

data will be shown, what kind of data will be required to the users in the registration process,

the adequate DSS response time, the minimum simulation stepsize, etc.

These pending decisions do not affect the project planning, since they are principally related to

T4.5 Self-learning nexus assessment engine, which starts at M24. Other tasks, such T4.2 Data

Sharing Tools, T4.3 Modelling of potential WEFE nexus impacts and stakeholder’s response,

or T4.3. Reinforcement Learning engine, have the required information to start with their

responsibilities.

D4.1 Self-learning nexus engine specifications and technical design

46 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Future Work/Next Steps
The second version of this deliverable will be presented in M24, and will consider the SHs

views and feedback on the SLNAE design.

During this time, WP4 will collaborate in workshops WS2 and WS3 with the aim to elaborate

on and discuss with SHs the subjects presented in this deliverable to finally design and develop

a useful and valuable tool for them.

D4.1 Self-learning nexus engine specifications and technical design

47 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

References

[1] Ford, Andrew, and Frederick Andrew Ford. Modeling the environment: an introduction
to system dynamics models of environmental systems. Island press, 1999.

[2] "IEEE Standard Glossary of Software Engineering Terminology," in IEEE Std 610.12-1990
, vol., no., pp.1-84, 31 Dec. 1990, doi: 10.1109/IEEESTD.1990.101064

[3] Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press

[4] Bellman, Richard. "Dynamic programming." Science 153.3731 (1966): 34-37

[5] Singh, Satinder P., and Richard S. Sutton. "Reinforcement learning with replacing
eligibility traces." Machine learning 22.1 (1996): 123-158

[6] Watkins, Christopher JCH, and Peter Dayan. "Q-learning." Machine learning 8.3 (1992):
279-292

[7] Sutton, Richard S. "Learning to predict by the methods of temporal differences." Machine
learning 3.1 (1988): 9-44

[8] Tsitsiklis, J. N., & Van Roy, B. (1997). Analysis of temporal-diffference learning with
function approximation. In Advances in neural information processing systems (pp.
1075-1081)

[9] O’Neill, J., Pleydell-Bouverie, B., Dupret, D., & Csicsvari, J. (2010). Play it again: reactivation
of waking experience and memory. Trends in neurosciences, 33(5), 220-229

[10] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... &
Petersen, S. Human-level control through deep reinforcement learning. Nature,
518(7540), 529-533, 2015

[11] Nair, Arun, et al. "Massively parallel methods for deep reinforcement
learning." arXiv preprint arXiv:1507.04296 (2015)

[12] Hausknecht, M., & Stone, P. (2015, September). Deep recurrent q-learning for
partially observable mdps. In 2015 AAAI Fall Symposium Series

[13] Wang, Ziyu, et al. "Dueling network architectures for deep reinforcement
learning." International conference on machine learning. PMLR, 2016

[14] Van Hasselt, H., Guez, A., & Silver, D. Deep reinforcement learning with double q-
learning. In Thirtieth AAAI conference on artificial intelligence, 2016

[15] Schaul, T., Quan, J., Antonoglou, I., & Silver, D. (2015). Prioritized experience replay.
arXiv preprint arXiv:1511.05952

D4.1 Self-learning nexus engine specifications and technical design

48 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

[16] Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., & Freitas, N. (2016, June).
Dueling network architectures for deep reinforcement learning. In International
conference on machine learning (pp. 1995-2003). PMLR

[17] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., ... & Wierstra, D.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,
2015

[18] Duan, Y., Chen, X., Houthooft, R., Schulman, J., & Abbeel, P. Benchmarking deep
reinforcement learning for continuous control. In International Conference on Machine
Learning (pp. 1329-1338), 2016

[19] Larma, M. L., Petersen, B. K., Kim, S. K., Santiago, C. P., Glatt, R., Mundhenk, T. N., ...
& Faissol, D. M. (2021). Improving exploration in policy gradient search: Application to
symbolic optimization. arXiv preprint arXiv:2107.09158

[20] Rückstieß, T., Felder, M., & Schmidhuber, J. (2008, September). State-dependent
exploration for policy gradient methods. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases (pp. 234-249). Springer, Berlin,
Heidelberg

[21] Willianms, R. J. (1988). Toward a theory of reinforcement-learning connectionist
systems. Technical Report NU-CCS-88-3, Northeastern University.

[22] Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015, June). Trust region
policy optimization. In International conference on machine learning (pp. 1889-1897).
PMLR.

[23] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347

[24] Sewak, M. (2019). Actor-critic models and the A3C. In Deep Reinforcement
Learning (pp. 141-152). Springer, Singapore.

[25] Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., ... & Kavukcuoglu,
K. (2016, June). Asynchronous methods for deep reinforcement learning. In International
conference on machine learning (pp. 1928-1937). PMLR

[26] Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., & Riedmiller, M. (2014,
January). Deterministic policy gradient algorithms. In International conference on
machine learning (pp. 387-395). PMLR

[27] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D. Wierstra,
Continuous control with deep reinforcement learning, arXiv preprint arXiv:1509.02971

[28] Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. (2018, July). Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In
International conference on machine learning (pp. 1861-1870). PMLR

D4.1 Self-learning nexus engine specifications and technical design

49 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

[29] Haarnoja, T., Tang, H., Abbeel, P., & Levine, S. (2017, July). Reinforcement learning
with deep energy-based policies. In International Conference on Machine Learning (pp.
1352-1361). PMLR.

[30] Weiss, Karl, Taghi M. Khoshgoftaar, and DingDing Wang. "A survey of transfer
learning." Journal of Big data 3.1 (2016): 1-40

[31] Clerc, M. (2010). Particle swarm optimization (Vol. 93). John Wiley & Sons

[32] Kramer, O. (2017). Genetic algorithms. In Genetic algorithm essentials (pp. 11-19).
Springer, Cham

[33] Dowsland, K. A., & Thompson, J. (2012). Simulated annealing. Handbook of natural
computing, 1623-1655

[34] Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-
parameter optimization. Advances in neural information processing systems, 24

D4.1 Self-learning nexus engine specifications and technical design

50 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Annexes

D4.1 Self-learning nexus engine specifications and technical design

51 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Annex I

Table AI.1. Use Cases

ID Description Component Goal System users Main course (steps)
Potential

requirements

UI-1 The user is able to see a landing

page explaining the NXG project

and methodologies (e.g., the

origin of reference pathways,

and some initial data)

User interface

- General

Let people know about

the NXG tool and the

project itself

User (All) 1. Open nxg tool website

2. Browse the landing page

3. Read the NXG project

information (common

information for all CSs)

UI-2 The user shall get information

about the CSs: objectives,

future scenarios, available

policies, policy packages, goals,

targets and indicators

User interface

- General

Let people know about

CSs in the project

User (All) 1. Open nxg tool website

2. Browse the landing page

3. Read the CSs information

4. The user can obtain

information about the

elements for a simulation:

objectives, policies, policy

packages, goals, targets,

and indicators

Automatic

integration of

CSs

information

UI-3 The user can select which CS

wants to see in more detail

User interface

- General

Investigate the

particularities of a Case

study

User (All) 1. The user enter into the

tool

2. The user selects one of

the available case studies

(from a map)

Automatic

integration of

CSs

information

D4.1 Self-learning nexus engine specifications and technical design

52 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

3. A new section is opened

with data of the CS

UI-4 The user is able to sign up and

log in in the tool

User interface

- General

Let people save results,

see detailed analysis and

results per simulations

and other future

features

User (All) 1. Open nxg tool website

2. Browse the landing page

searching for register

button

3. Fill the form and submit

4. Send confirmation email

GDPR

compliance

UI-5 The user is able to manage its

profile, settings and another

user functionalities (i.e.,

recover the password,

language, etc)

User interface

- General

Let the users is able to

manage its profile

User (All) 1. Open nxg tool website

3. Go to login section

3.1. Click on recover

password section

3.2. Start process to recover

the password: send

email/type email & new

password

4. Go to profile section

4.1. Change language

GDPR

compliance

UI-6 The user wants to start a new

simulation process

User interface

- Simulations

Management

Let the users run new

simulations

User (All) 1. The user selects the 'NEW

simulation' function

2. The simulation's

configuration section is

presented (UI-11)

D4.1 Self-learning nexus engine specifications and technical design

53 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

UI-7 The user wants to access the

saved simulations

User interface

- Simulations

Management

Let the users access the

saved simulations

User (All) 1. The user is logged in

2. The user access to the

simulation's management

section

3. The saved simulations are

presented

API and

Database

UI-8 The user wants to

duplicate/rename/remove

saved simulations in a table

format

User interface

- Simulations

Management

Let the users manage the

saved simulations

User (All) 1. The user is logged in

2. The user access the

simulation's management

section

3. The saved simulations are

presented

4. The user can duplicate,

edit, rename, and remove

saved simulations

API and

Database

UI-9 The user wants to see the

results of saved simulations

User interface

- Simulations

Management

Let the users access the

saved results

User (All) 1. The user is logged in

2. The user access the

simulation's management

section

3. The saved simulations are

presented

4. The user can select one of

the saved simulations

5. The results of the

selected simulations are

presented

API and

Database

D4.1 Self-learning nexus engine specifications and technical design

54 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

UI-10 The user wants to load a saved

simulation

User interface

- Simulations

Management

Let the users rerun (and

possibly modify) a saved

simulation

User (All) 1. The user is logged in

2. The user access the

simulation's management

section

3. The saved simulations are

presented

4. The user can select one of

the saved simulations

5. The simulation is loaded

API and

Database

UI-11 The user shall configure a new

simulation in an easy user

interface

User interface

- Simulations

Configuration

To configure all possible

parameres to run a

simulation: Select a CS,

select a reference

pathway, level of

uncertainty,

select/define targets,

select indicators, etc

User (All) (The user is in the

Configuration section)

1. The user selects the CS

2. The user selects the

reference pathway

3. The user selects the level

of uncertainty

4. The user selects/defines

targets and indicators

(different time horizon on

the achievement of targets

can be defined)

5. The users clicks "next" to

go to the Simulation section

Wizard process

Database or

API

UI-12 The user shall be able to select

and apply policy packages

User interface

- Simulation

Simulate the effects of

policies in the nexus. Get

Level of policy

User (All) (The user is in the

Simulation section)

1. The user has the option to

API and polices

logic system

D4.1 Self-learning nexus engine specifications and technical design

55 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

through the simulation time

horizon.

integration (conflicts-

synergies) – Policy

impacts

select multiple policies from

different nexus sectors

(WEFE) and to apply them

at a given time step

UI-13 The user can navigate forward

and backward through the

simulation time horizon in a

dynamic timestep size

User interface

- Simulation

Change the

implementation of policy

packages based on

current results

User (All) (The user is in the

Simulation section)

1. The user selects a policy

package to be applied (UI-

12) and a specific timestep

size to advance in the

simulation time horizon

2. The simulation is run

3. The user decides whether

to continue o go back into

the simulation

4. This cycle is repeated

until the user decides to

finish the simulation

API and polices

logic system

UI-14 The user can personalize a

policy when it is applied in the

simulation

User interface

- Simulation

Configure the policies to

simulate with start and

end parameters, with a

range of application, and

some additional decision

variables.

User (All) (The user is in a Simulation

section)

1. The user configure the

policies (budgets allocated,

aims, etc if possible)

2. The user configures when

to start applying them

3. The user configures the

API and polices

logic system

D4.1 Self-learning nexus engine specifications and technical design

56 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

duration of the policy (if

possible)

4. Other configurations may

be needed per policy

UI-15 The user shall be able to see the

information of the

configuration section, the

applied policy packages, the

nexus variables and the level of

achievement of both default

and configured nexus targets

along with the simulation time

horizon and available tokens

User interface

- Simulation

To have the reference

about the configuration

stage and the current

simulation stage

User (All) (The user is in a Simulation

section)

1. The user can visualize the

configuration details: CS,

reference pathway,

uncertainty, indicators, ...

2. The user can visualize the

selection of policy

packages, targets

achievement, etc

UI design

UI-16 The user shall be able to access

to policy package

recommendations based on

both default and configured

nexus targets

User interface

- Simulation

Get some support in the

decision of selecting

policies

User (All) (The user is in a Simulation

section)

1. The user opens a selct

button an choose the DSS

features to apply in the

simulation

2. expected options: entire

policy packages or fine-

DSS

D4.1 Self-learning nexus engine specifications and technical design

57 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

tuning of selected by user

policy packages.

U-17 The user shall be able to save a

simulation at any moment

User interface

- Simulation

Save simulation state User (All) (The user is in the

Simulation section)

1. The user saves the

current simulation

API and

Database

UI-18 The user shall be able to select

the way to visualize the results

from a set of possibilities

User interface

- Simulation

results

Select the best way to

assess NEXUS

User (All) (The user is in the Results

section)

1. The user is able to see a

menu with different options

to present the results and

evaluations

2. The user is able to select

from the menu the way to

see the simulation results

(simple view, detailed view)

UI design

UI-19 Simple view: The user wants to

see results of applying a set of

policies in a case study along

the years

User interface

- Simulation

results

Simulate the effects of

policies in the nexus,

calculate indicators and

targets, and output

variables for a CS and

reference pathway

User (All) (The user is in the Results

section)

1. The user is able to see in

graphics the effects of the

policies in the nexus sectors

2. The user is able to see in

UI design

D4.1 Self-learning nexus engine specifications and technical design

58 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

a table the indicator results

and the targets

UI-20 Detailed view: The user wants

to visualize the uncertainty in

the results

User interface

- Simulation

results

Uncertainty must be

considered in the

viualization part

User (All) (The user is in the Results

section)

1. The user sees the results

2. The user selects the

depth technical analysis:

The user sees the results

with uncertainty

visualization

UI design

UI-21 Detailed view: NEXUS impacts

of the application of policy

packages and SDM variables

User interface

- Simulation

results

Obtain a depth

numerical analysis in

NEXUS sectors and SDM

variables simulations

User (All) (The user is in the Results

section)

1. The user sees the results

2. The user selects the

depth technical analysis:

how the application of a

policy in a nexus sector

affects another nexus

sectors is presented

UI design

D4.1 Self-learning nexus engine specifications and technical design

59 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

UI-22 The user wants to compare the

results of different simulations

in the same CS

User interface

- Simulations

comparison

Compare simulations in

the same CS using the

same framework

User (All) (The user is in the

Simulations Management

section)

1. The user is able to select

the saved simulations that

wants to compare from the

same CS, same Reference

Pathway, and same default

policy goals

2. The user is able to see the

comparisons with the

targets and indicators

achievement and applied

policy packages

API, Database

and UI design

UI-23 The user wants to compare the

results of different simulations

between different CSs

User interface

- Simulations

comparison

Compare simulations

between different CSs

using the same

framework

User (All) (The user is in the

Simulations Management

section)

1. The user is able to select

the saved simulations that

wants to compare from

different CS, same

Reference Pathway, WEFE

footprint indicators, and

common policy goals

2. The user is able to see the

comparisons with the

API, Database

and UI design

D4.1 Self-learning nexus engine specifications and technical design

60 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

targets and indicators

achievement and applied

policy packages

DSS-1 The user wants to get

recommendations on policy

packages based on default

targets

DSS

functionalities

- SLNAE

Get policy

recommendation

according to defined

configurations:

reference pathway, time

steps, number of years,

uncertainty, indicators

and default targets. And

let users see how the

‘best’ policy option(s)

change depending on

which targets are

prioritised (selected)

User (All) (The user is in the

Simulation section)

1. The user configures

stepsize and horizon time

for the simulation (default

targets and indicators

already defined in the

configuration section)

2. The user asks for

recommendation on

specific steps during the

policy packages selection

(can get 1 or more

recommendations)

3. The user gets a

recommendation based on

policies

AI service

D4.1 Self-learning nexus engine specifications and technical design

61 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

DSS-2 The user wants to get

recommendations on policy

packages based on defined by

user targets

DSS

functionalities

- SLNAE

Get policy

recommendation

according to defined

configurations:

reference pathway, time

steps, number of years,

uncertainty, indicators

and user-defined targets.

And let users see how

the ‘best’ policy option(s)

change depending on

which targets are

prioritised (selected)

User (All) (The user is in the

Simulation section)

1. The user configures

stepsize and horizon time

for the simulation (user-

defined targets and

indicators already defined

in the configuration section)

2. The user asks for

recommendation on

specific steps during the

policy packages selection

(can get 1 or more

recommendations)

3. The user gets a

recommendation based on

policies

AI service

DSS-3 Identification of relevant policy

packages with the support of an

AI in an iterative co-creation

process

DSS

functionalities

- co-creation

process

Identification of revelant

policy packages for their

evaluation with SHs

under the co-creation

framework

WP1 (Policy

modellers) &

WP4 (SLNAE)

& WP5 (CSs) &

SHs

(Iterative co-creation

process)

1. Definition of Nexus

Policies and Targets (WP1 &

WP5 & SHs)

2. Integration of Nexus

Policies and Indicators into

Complexity Science tools

(WP2 & WP3)

Co-creation

framework

Automatic

SDMs

integration

Automatic

Policies logic

integration

Automatic

D4.1 Self-learning nexus engine specifications and technical design

62 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

3. DSS for the Identification

of optimal Nexus Policy

packages (WP4)

4. Evaluation of proposed

policy packages (WP1 &

SHs)

5. Back to 1

Nexus goals,

targets and

indicators

integration

AI service

DST-1 the user wants to add/update

Policy data for a specific CS

Data Sharing

Tool

Last policy data is

available for the SDMs

and SLNAE development

WP1 (Policy

modellers) &

WP5 (CSs)

1. The user adds a version

number to the new file

following stablished

protocol

2. The user logs in into the

Data repository and save

the data (in excel format) in

the corresponding folder

3. The user edit the

summary file and add

information about the new

data

4. A notification is sent to

required people

A data sharing

protocol and

platform

D4.1 Self-learning nexus engine specifications and technical design

63 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

DST-2 the user wants to add/update

Policy Goals, Policy Targets and

Indicators data for a specific CS

Data Sharing

Tool

Last Policy Goals, Policy

Targets and Indicators

data is available for the

SDMs and SLNAE

development

WP1 (Policy

modellers) &

WP5 (CSs)

1. The user adds a version

number to the new file

following stablished

protocol

2. The user enter into the

Data repository and save

the data (in excel format) in

the corresponding folder

3. The user edit the

summary file and add

information about the new

data

4. A notification is sent to

required people

A data sharing

protocol and

platform

DST-3 the user wants to add/update

predictions/simulated

biophysical and socio-economic

modelling outputs for a specific

CS and scenario/reference

pathway

Data Sharing

Tool

Last simulation data is

available for the SDMs

construction

WP2

(Environment

simulators)

1. The user adds a version

number to the new file

following stablished

protocol

2. The user enter into the

Data repository and save

the data (in ascii/binary

formats) in the

corresponding folder

3. The user edit the

summary file and add

information about the new

A data sharing

protocol and

platform

D4.1 Self-learning nexus engine specifications and technical design

64 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

data

4. A notification is sent to

required people

DST-4 the user wants to access to data

to build an SDM for a specific CS

and scenario/reference

pathway

Data Sharing

Tool

Access to new data

(either new version of

Policies, Policy Goals or

simulated reference

pathways) to work on a

specific SDM

WP3 (SDMs) 1.1 DST-1 has been

successfully completed

1.2 Or DST-2 has been

successfully completed

1.3 Or DST-3 has been

successfully completed

2. The user enters the Data

Repository in the

corresponding folder and

downloads the data

A data sharing

protocol and

platform

DST-5 the user wants to add/update

an SDM for a specific CS and

scenario/reference pathway

Data Sharing

Tool

Last SDMs versions are

available for translation

in SLNAE

WP3 (SDMs) 1. The user adds a version

number to the new file

following stablished

protocol

2. The user enter into the

Data repository and save

the SDM (in .stmx format)

and the required validation

data (in excel format) in the

A data sharing

protocol and

platform

D4.1 Self-learning nexus engine specifications and technical design

65 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

corresponding folder

3. The user edit the

summary file and add

information about the new

data

4. A notification is sent to

required people

DST-6 The user wants to add/update

WEFE footprint indicators

Data Sharing

Tool

Last WEFE footprint

indicators data is

available for the SDMs

and SLNAE development

WP3 (SDMs) 1. The user adds a version

number to the new file

following stablished

protocol

2. The user enter into the

Data repository and save

the data (in excel format) in

the corresponding folder

3. The user edit the

summary file and add

information about the new

data

4. A notification is sent to

required people

A data sharing

protocol and

platform

D4.1 Self-learning nexus engine specifications and technical design

66 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

DST-7 the user wants to access to data

to work on SLNAE

Data Sharing

Tool

Access to new data

(either new versions of

Policies, Policy Goals,

SDMs or WEFE footprint

indicators, CSs info, etc)

to work on the SLNAE

WP4 (SLNAE) 1.1 DST-1 has been

successfully completed

1.2 Or DST-2 has been

successfully completed

1.3 Or DST-5 has been

successfully completed

1.3 Or DST-6 has been

successfully completed

2. The user enters the Data

Repository in the

corresponding folder and

downloads the data

A data sharing

protocol and

platform

DST-8 WP5 team wants to add/update

CS metadata

Data Sharing

Tool

Last CS metadata is

available for the SLNAE

development

WP5 (CSs) 1. The user adds a version

number to the new file

following stablished

protocol

2. The user enter into the

Data repository and save

the data (in excel format) in

the corresponding folder

3. The user edit the

summary file and add

information about the new

data

4. A notification is sent to

required people

A data sharing

protocol and

platform

D4.1 Self-learning nexus engine specifications and technical design

67 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

DST-9 WP5 team wants to add/update

text translations

Data Sharing

Tool

Last translations are

available for the SLNAE

development

WP5 (CSs) 1. The user adds a version

number to the new file

following stablished

protocol

2. The user enter into the

Data repository and save

the data (in excel format) in

the corresponding folder

3. The user edit the

summary file and add

information about the new

data

4. A notification is sent to

required people

A data sharing

protocol and

platform

DST-

10

An external user wants to

access to the NXG open data

Data Sharing

Tool

An external user access

to Open and Harmonized

data generated during

the NXG project through

the Semantic Repository

User (All) 1. The user access to the

Semantic Repository

2. The user obtains the

required information

Sematic

Repository

D4.1 Self-learning nexus engine specifications and technical design

68 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

Annex II
Table AII.1. Requirements

ID Use

case

Component Description Details Prerequisites To be

iterated

FR-01 UI-4 User interface - General The system allows the user's

registration (sign in)

At least, username, email and

password information will be

required

FR-02 UI-4 User interface - General The system allows the user to log in

FR-03 UI-4 User interface - General The system allows the user to log out

FR-04 UI-4 User interface - General The system allows the user to log in in

a guest mode

No sign in is required

FR-05 UI-4 User interface - General The system allows the user's password

recovery

FR-06 UI-5 User interface - General The system allows the user's profile

management

At least, username and email

information

FR-07 UI-5 User interface - General The system allows the user to change

the language

English, Greek, Bulgarian, Italian,

German, Romanian, Serbian,

Latvian, Lithuanian

A native translator

from English to

each CS is required

*

FR-08 all SLNAE-Backend The system models the user software

entity

The user entity contains a

username, email, registration

date and encrypted password

*

FR-09 UI-4 User interface - General The system shows information about

cookies and GDPR

FR-10 UI-1 User interface - General The system has a main view General project information is

shown

FR-11 UI-2 User interface - General The system has a CSs main view General CSs information is

shown on a map

D4.1 Self-learning nexus engine specifications and technical design

69 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

FR-12 UI-2 User interface - General The system has a CS specific view 5 CS specific pages provide

detailed information:

- CS's characteristics

- Available policies

- Nexus goals and targets

FR-13 UI-6,

UI-all

User interface - General The system has a shortcut to access the

simulation configuration view to start a

new simulation

FR-14 UI-7,

UI-all

User interface - General The system has a shortcut to access the

simulation management view

FR-15 UI-all User interface - General The system has a shortcut to access the

simulation view

FR-16 UI-all User interface - General The system has a shortcut to access the

simulation results view

FR-17 UI-all User interface - General The system has a shortcut to access the

simulation comparison view

FR-18 UI-11 User interface -

Simulations

Configuration

The system has a view to configure a

simulation

Static parameters are presented

to the user to configure the

simulation. At least, the

following parameters are

included:

- The CS

- The reference pathway

- Simulation goals, targets and

WEFE or CS specific indicators

(to be defined by the user)

- Uncertainty mode

*

D4.1 Self-learning nexus engine specifications and technical design

70 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

FR-19 UI-11 User interface -

Simulations

Configuration

The simulation configuration view

allows the user to select and configure

simulation goals and targets

Specific simulation goals can be

defined, and new targets can be

configured. The time step to

achieve these targets can also be

set

*

FR-20 UI-7 to

UI-10

User interface -

Simulations

Management

The system has a view to manage

saved simulations

Saved simulations are presented

in a table mode.

the user is logged

in

FR-21 UI-9 User interface -

Simulations

Management

The simulation management view

allows the user to see the results of a

simulation

FR-22 UI-10 User interface -

Simulations

Management

The simulation management view

allows the user to load a simulation

FR-23 UI-8 User interface -

Simulations

Management

The simulation management view

allows the user to remove a simulation

FR-24 UI-8 User interface -

Simulations

Management

The simulation management view

allows the user to rename a simulation

FR-25 UI-8 User interface -

Simulations

Management

The simulation management view

allows the user to duplicate a

simulation

By default, the new simulation

has the source simulation name

plus '_copy'

FR-26 UI-22,

UI-23

User interface -

Simulations

Management

The simulation management view

allows the selection of multiple

simulations for comparison

No more than five simulations

can be compared at the same

time

D4.1 Self-learning nexus engine specifications and technical design

71 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

FR-27 UI-12

to UI-

17

User interface -

Simulation

The system has a view to run a

simulation

FR-28 UI-12,

UI-13

User interface -

Simulation

The simulation view shows the

simulation time horizon

from 2020 till 2050

FR-29 UI-13 User interface -

Simulation

The simulation view allows the user to

go forward and backward through the

simulation time horizon

FR-30 UI-12 User interface -

Simulation

The simulation view allows the user to

select a specific timestep to be

simulated

The minimum time step size is 1

year

*

FR-31 UI-12 User interface -

Simulation

The simulation view shows available

policies to be applied.

Policies information is shown

(e.g. building time, duration,

required tokens)

*

FR-32 UI-12 User interface -

Simulation

The simulation view allows the user to

apply policies

Policies can be applied at

specific time step, and a

simulation button triggers the

execution of the configured

scenario

FR-33 UI-12 User interface -

Simulation

The simulation view allows the user to

remove applied policies

FR-34 UI-12,

UI-15

User interface -

Simulation

The simulation view shows the applied

policies

FR-35 UI-14 User interface -

Simulation

The simulation view allows the user to

configure policies

In those cases when the policy

can be configured

FR-36 UI-12 User interface -

Simulation

The simulation view limits the

application of policies when required

When a policy can't be applied

due to restrictions with other

D4.1 Self-learning nexus engine specifications and technical design

72 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

already selected policies, they

should be hidden.

FR-37 UI-15 User interface -

Simulation

The simulation view shows available

tokens to apply policies

The application of a policy has

associated an economic and

social costs expressed in tokens

*

FR-38 UI-12 User interface -

Simulation

The simulation view limits the

application of policies when enough

tokens are not available

When a policy can't be applied

due to token limitations, they

should be hidden

*

FR-39 UI-15 User interface -

Simulation

The simulation view shows the level of

achievement of default Nexus Goals,

targets and WEFE footprint indicators

A set of default metrics per CS

(WEFE footprint indicators are

the same across CSs)

FR-40 UI-15 User interface -

Simulation

The simulation view shows the level of

achievement of user-defined Nexus

Goals, targets and WEFE footprint

indicators

A set of user-defined metrics per

simulation

*

FR-41 UI-15 User interface -

Simulation

The simulation view shows how Nexus

variables evolve during simulation

FR-42 UI-17 User interface -

Simulation

The simulation view allows the user to

save a simulation

A simulation name must be

given, and another simulation

metadata is also persisted, such

as the creation and modification

date. Simulation configuration,

selected policy packages and

targets achievement level is

saved

the user is logged

in

FR-43 UI-16,

DSS-1

User interface -

Simulation

The simulation view shows policy

packages recommendations aimed to

Recommendations generation

time should be low (<30s)

D4.1 Self-learning nexus engine specifications and technical design

73 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

achieve default goals, targets and

WEFE footprint indicators

FR-44 UI-16,

DSS-2

User interface -

Simulation

The simulation view shows policy

packages recommendations aimed to

achieve user-defined goals, targets and

WEFE footprint indicators

*

FR-45 UI-6 to

UI-23

SLNAE-Backend The system models the simulation

software entity

The simulation entity contains a

simulation name, creation and

modification date time, the

configuration static parameters,

the applied policies, and targets

achievement level

FR-46 UI-18

to UI-

21

User interface -

Simulation results

The system has a view to show the

simulation results

The user can choose among two

specific view modes to analyse

simulation results

FR-47 UI-19 User interface -

Simulation results

The simulation results view has a basic

mode

Mode to be used by non-expert

users where basic Nexus

information is shown

*

FR-48 UI-20,

UI-21

User interface -

Simulation results

The simulation results view has an

advanced mode

Mode to be used by expert users

where a complete view of Nexus

information is shown

*

FR-49 UI-20,

UI-21

User interface -

Simulation results

The advanced mode of the simulation

results view can show uncertainty in

simulations

*

FR-50 UI-20,

UI-21

User interface -

Simulation results

The advanced mode of the simulation

results view shows a deeper detail on

Nexus variables

*

D4.1 Self-learning nexus engine specifications and technical design

74 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

FR-51 UI-22,

UI-23

User interface -

Simulation comparison

The system has a view to allow the

simulations comparison

Applied policies are shown for

each simulation

FR-52 UI-22 User interface -

Simulation comparison

The simulations comparison view

allows to compare simulations ran for

a given CS

The level of achievement of

default Goals and Targets is

compared. Other common

indicators are also shown in the

comparison

*

FR-53 UI-23 User interface -

Simulation comparison

The simulations comparison view

allows to compare simulations ran for

any CS

The level of achievement of

WEFE footprint indicators

*

FR-54 all SLNAE-Backend The system offers a REST API to

manage the software entities

CRUD methods are offered for

each of the identified entities

(e.g. simulations)

FR-55 all SLNAE-Backend The system persists the software

entities in a database

CRUD methods are offered for

each of the identified entities

(e.g. simulations)

FR-56 UI-12

to UI-

17

SLNAE-Backend The system implements the polices

logic

Building time, active time,

required tokens, generated

tokens, permanent

FR-57 DST-1,

DST-2

SLNAE-Backend The system automatically integrates

policies when new versions are

available

FR-58 DST-5,

DST-7

SLNAE-Backend The system automatically integrates

SDMs when new versions are available

Stella language is translated to

python.

FR-59 DST-2,

DST-6,

DST-7

SLNAE-Backend The system automatically integrates

Nexus goals, targets and WEFE and CSs

indicators when new versions are

available

D4.1 Self-learning nexus engine specifications and technical design

75 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

FR-60 DST-7,

DST-8

SLNAE-Backend The system automatically integrates

CSs information

FR-61 DST-

10

Data Sharing Tool The system automatically harmonize

data

Following adequate ontologies

FR-62 DST-

10

Data Sharing Tool The system automatically publishes

data in an open infrastructure

In the Semantic Repository

FR-63 DSS-3 DSS The system identifies optimal policy

packages given a predefined set of

indicators to be achieved

In background

FR-64 DST-1,

DST-7

The system allows the user to

upload/download data to define

Policies

In excel format for a specific CS

FR-65 DST-2,

DST-7

The system allows the user to

upload/download data to define goals,

targets and indicators

In excel format for a specific CS

FR-66 DST-3,

DST-4

The system allows the user to

upload/download biophysical and

socio-economic modelling outputs

In ascii/binary formats for a

specific CS and reference

pathway

FR-67 DST-5,

DST-7

The system allows the user to

upload/download SDMs

In Stella (.stmx) format for a

specific CS and reference

pathway

FR-68 DST-6,

DST-7

The system allows the user to

upload/download data to define WEFE

footprint indicators

In excel format for a specific CS

NFR-

01

all all Usability. The interaction by the user

with the system must be simple and

easy to use.

D4.1 Self-learning nexus engine specifications and technical design

76 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

NFR-

02

all all Usability: Simple navigation structure,

with the buttons always in the same

place and with the possibility of going

back or to the main menu.

NFR-

03

all all Usability: The UI will follow the

principles of adaptive/responsive web

design.

NFR-

04

all all Usability: The UI must be compatible

with all major modern browsers

(Firefox, Chrome, Edge/IE).

NFR-

05

all all Security: Standard security capabilities

in browsers, this includes the ability to

manage cookies and the use of HTTPs.

NFR-

06

all all Security: The system must implement

all the necessary security components

to ensure the privacy and

confidentiality of users and the

protection of the processed data.

NFR-

07

all all Reliability: The system must be

consistent, with good error control and

management.

NFR-

08

all all Reliability: The system must be a high

availability service ("High availability"),

ensuring that the platform can

continue to function at a lower level in

the event of failures of some of its

components.

D4.1 Self-learning nexus engine specifications and technical design

77 This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under grant agreement No 101003881

NFR-

09

all all Scalability: The service must be

scalable to provide acceptable

response time

