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Abstract 

The NEXOGENESIS (NXG) objective in WP4 is to develop the Self Learning Nexus 

Assessment Engine (SLNAE) platform to enable an intelligent assessment in the WEFE 

policy-making scenario. In this line, the present document reports the first steps towards this 

goal. 

 

The six WP4 pillars are introduced, which identify the fundamental Self-Learning Nexus 

Assessment Engine (SLNAE) components and link them with other NGX WPs outputs: i) 

the WEFE Policy framework, ii) WEFE Goals, Targets and Indicators, iii) the Nexus 

complexity modelling, iv) the Decision Support System functionalities, v) the Data Sharing 

Tools, and vi) the Graphical User Interface. 

 

In order to proceed with the SLNAE design, first, the use case methodology has been 

implemented to collect user stories and later to identify the required functionalities the 

platform must offer. On this basis, the general SLNAE platform architecture and all the 

components have been designed, and the required technologies to achieve so are identified. 

A deeper analysis has been carried out to define the algorithmic methodologies and NXG 

WP4 research in the self-learning engine, which will be based on novel AI, ML and control 

theory techniques. 

 

Finally, the NXG Data Sharing Tools system has been also designed following the same 

approach (use cases, requirements and final design) to enable a flexible cross-WP data 

exchange. 

 

The present document corresponds to the first version (v1.0) of deliverable D4.1 Self-

learning nexus engine specifications and technical design. In M24, a second version (v2.0) 

will be presented where the stakeholders’ views and feedback will be considered to improve 

the use cases, requirements and ultimately the designs presented in v1.0. With this, it is 

expected to generate a more useful and valuable tool for SHs and final users. 

 

Related Deliverables: 

There are no related deliverables 
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1. Introduction 
The Self Learning Nexus Assessment Engine (SLNAE), for simplification also known as the 

Nexogenesis Tool (NXGT), is a platform aimed to provide support in WEFE (Water, Energy, 

Food and ecosystems) policy-decision-making scenarios. It considers the Nexogenesis (NXG) 

holistic approach for nexus governance to propose integrative policies with the aim to maximise 

global policy goals. At its core, Artificial Intelligence (AI) and Machine Learning (ML) 

algorithms enable the possibility to effectively operate the complex WEFE interlinkages and 

provide optimal policy advice for improved resources management. 

In this context, the SLNAE tool will be used both during the NXG project time and after its 

finalization. In the first case, the engine will be used along with the proposed NXG co-creation 

framework for nexus governance and WEFE resource management. Figure 1 presents this stage 

of the cocreation framework, where the following iterative pipeline is defined: i) Nexus policies 

and targets are defined together with WP1 and SHs (T1.4), ii) Proposed policies are integrated 

into the complexity science tools developed in WP3 (T3.3), iii) Optimal policy packages are 

built by the self-learning engine in WP4 (T4.4), and iv) SHs and WP1 validate policy packages 

recommendations (T1.4). When possible (e.g. in front-runners CSs), two rounds of this 

methodology will be applied. Further information regarding this process can be found in WP1 

deliverables. 

 

 
Figure 1. NXG co-creation framework for Nexus Policy packages identification 

At a later stage, during the project, the SLNAE capabilities will be extended with ICT 

technology and functionalities (e.g. a Graphical User Interface or an Open Semantic 

Repository) to let the final users autonomously interact with the NXG research and 

developments linked to the NXG CSs. In the end, a completely online platform will be 

developed which will integrate all the NXG outcomes to help the community to understand the 

WEFE nexus interlinkages and policy impacts and implications. 

In parallel, the SLNAE will also provide support to the NXG project in terms of data-sharing 

tools. A common data repository will be deployed to centralize all the data created during the 

NXG project, which considers, at least, the following entities: i) policies designed in WP1 and 

Definition of Nexus Policies 
and Targets 

(WP1 & SHs)

Integration of Nexus 
Policies and Indicators into 
Complexity Science tools 

(WP2 & WP3)

Identification of optimal 
Nexus Policy packages 

(WP4)

Evaluation of proposed 
policy packages 

(WP1 & SHs)
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WP5, ii) outputs of nexus scenario simulations generated in WP2, iii) complexity science tools 

developed in WP3, and iv) the definition of policy goals and targets, WEFE footprint indicators, 

and CS specific indicators in WP1 and WP5. This system will contribute to a better cross-WPs 

organization and synchronization. Furthermore, all this information and data will be considered 

under the Data Management Plan (DMP) umbrella, and will be public (in those cases where no 

restrictions are identified) through the NGX open repositories. 

With the previous general objectives in mind, it is of utmost importance to proceed with a 

detailed disaggregation and description of the functional and non-functional requirements 

required by the proposed solution. Later, once identified, those requirements are translated into 

system functionalities and ultimately incorporated into the platform design. In this scenario, the 

design of the SLNAE tool also takes advantage of the NXG cocreation methodology, since both 

consortium expert partners and SH are taken into account in this process.  

In this context, this document represents the first version of the deliverable D4.1, and includes 

all the use cases, requirements and designs obtained till now. During the first half of the project, 

this design will be shared with the SHs and their vision and feedback will be collected (mainly 

in workshops WS2 and WS3). Consequently, this document will be accordingly iterated. As a 

result, in M24 the final version of D4.1 will be generated, which will cover the whole SLNAE 

platform design by taking also into account the SHs view and advice (M24). Mainly, the topics 

that are most likely to be extended are those where SHs’ feedback is considered, such as the 

SLNAE GUI or the DSS functionalities. 

1.1. Structure  
The document is structured as follows: Section 2 introduces the WP4 pillars, those key 

components that will guide the SLNAE platform development. Next, Section 3 presents the 

methodology used to collect and define the use cases, which are later used in Section 4 to 

identify all the SLNAE requirements. On this basis, Section 5 develops the basis of the SLNAE 

platform. Finally, Section 6 ends with the conclusions and next steps. 
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2. Pillars 
In order to start the collection of requirements for the SLNAE and ultimately proceed with its 

design, the fundamental components of the tool have been classified into pillars. A pillar 

represents a principal element that constitutes a basis to support the structure of the engine. 

Each pillar has its own needs and functionalities. Most of the pillars are represented by a single 

component, however, the GUI pillar is compounded by several ones.  

The six WP4 pillars are introduced, which identify the fundamental Self-Learning Nexus 

Assessment Engine (SLNAE) components and link them with other NGX WPs outputs: i) the 

WEFE Policy framework, ii) WEFE Goals, Targets and Indicators, iii) the Nexus complexity 

modelling, iv) the Decision Support System functionalities, v) the Data Sharing Tools, and vi) 

the Graphical User Interface. 

 The identified pillars are presented below. 

4.1. WEFE Policy Framework  
The NXG cross-sectorial policy-making framework is a critical input and component in WP4. 

It defines the available set of policies that will be used by the AI self-learning engine to generate 

optimal WEFE policy packages. Furthermore, in a second phase, it will also contain all the 

CSs’ policies that will be available in the SLNAE platform to be used by the users in the WEFE 

simulations. 

Policies will have different parameters for the definition of their applicability and logic. The 

qualitative impacts of policies in the nexus sectors will be translated into quantitative effects 

through the SDMs. In this context, the SDMs will be able to simulate any policy, no matter if 

it is regional or not. However, there will be a limited number of combinations of policies since 

not all of them make sense. Therefore, a list of available policies and permitted combinations 

should be made per CS. Moreover, depth analysis of the effect of policy packages on the SDMs 

variables should be presented in order to understand the implications and relation between 

nexus sectors and impacts. In summary, this pillar covers the integration of policies per each 

CS, the best policy packages per CS, the internal policy parameters to be considered in the 

application of each policy, and the external policy parameters that will define the simulation 

logic. 

Some of the questions that need to be solved in collaboration with WPs, CSs and SHs regarding 

the WEFE policy framework component are: Which policies are relevant per sector and CS? 

The policies to be implemented should be policies that already exist, or new 

policies/instruments can be proposed? Which are the capabilities of the simulations regarding 

policy implementation? What type of policies will be implemented? Which combination of 

policies (policy package) is reasonable and coherent to be implemented? And finally, which 

type of policy parameters will be available for the end-users’ policy package selection and 

definition? All this information will be provided by CS working in close collaboration with 

WP1 and WP5. 
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4.2. WEFE Goals, Targets & Indicators 
Another critical element in WP4 is the WEFE Goals, Targets & Indicators pillar. A policy goal 

defines a strategic objective for a particular policy or set of policies, usually related only to one 

nexus sector. Policy goals are found in official policy documents and may be different per CS. 

Targets make policy goals measurable by quantifying them. A target will be a reference point 

to see how users are getting closer to a certain ambition. Moreover, users may select more 

ambitious targets than the ones established by regulations. The achievement of targets will be 

assessed by a group of metrics (indicators) previously associated with the specific targets. There 

will be a set of common indicators across CSs and specific indicators per each CS. Common 

indicators will be selected by the project partners to allow comparison between CSs, and the 

case-specific indicators will be co-decided with SHs in each CS based on what is prescribed by 

policies and on SHs’ preferences. Indicators will be calculated using the outputs from the SDMs 

in the SDM.  

Furthermore, composite indicators will be considered to combine one or more indicators on a 

more general level to summarize the status of each nexus sector. There is no need to involve 

SH at this stage; it is the job of the project to come up with meaningful composite indicators.  

Finally, the WEFE footprint indicators represent another element in the WEFE Goals, Targets 

& Indicators pillar that will consider the ecosystem to yield a composite index that utilises the 

nexus as its conceptual framework related to Sustainable Development Goals (SDGs). These 

indicators will be common for all CSs in the SLNAE, and will enable cross CSs comparisons. 

Data will be normalized in order to allow this comparison. The availability of data, what data 

is available, and what data is relevant needs to be considered in the development of these 

indicators (WP3). 

Goals, WEFE targets, WEFE indicators, composite indicators, and WEFE footprint indicators 

must be well defined to evaluate the applications of policy packages, and allow comparison 

between different situations, reference pathways, and CSs. All this information will be provided 

by WP1, WP3 and WP5. 

4.3. Nexus complexity modelling 
This pillar encompasses all the issues related to the implementation of functionalities in the 

SDMs. SDMs functionalities should be defined in the early stages of the project since STELLA 

SDMs will be translated into Python language in an automatic procedure for their integration 

and execution in the SLNAE tool. The main mechanisms that will be used in the SDMs have 

been specified to be stocks, flows, converters, and an array of converters [1]; but others like 

delays may be also analyzed. All mechanisms must be known and considered in the translation 

process. 

Moreover, policy package implications will be represented in SDMs. They will affect some 

SDMs variables or projections. However, higher logic of policy behaviour will be implemented 

in the SLNAE whenever it becomes easier. For that, policy parameters and policy typologies 

used to define a policy should be confirmed in advance. 
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Similarly, all variables needed to compute indicators and low-level indicators will be provided 

by the SDMs. However, high-level indicators and targets will be computed outside the SDMs, 

in the SLNAE, according to end-users requests.  

Finally, uncertainty must be considered in the SDMs and the SLNAE (both in the GUI and the 

self-learning engine processes).  

Therefore, the SDM component will comprise all use cases related to the STELLA mechanisms, 

policy packages implementation and logic, SDMs needs for the computation of indicators, and 

the implementation of uncertainty through the SDMs. In the latter case, for each SDM input 

variable, there will be a data distribution specification (e.g. mean and standard deviation in a 

normal distribution) instead of a time series. 

4.4. DSS functionalities 
The Decision Support System (DSS) pillar is based on the self-learning engine, and has two 

main functionalities: the policy identification in the SH co-creation process to evaluate and 

support the policy package definition (DSS functionalities - co-creation process), and the end-

user decision support system through the SLNAE UI (DSS functionalities - SLNAE). 

The first functionality aim is to help in the iterative process to identify the relevant policy 

packages for their evaluation together with SHs under the co-creation framework. This 

functionality will be considered during the project execution. 

The second functionality is to recommend valuable policy packages to the users in order to 

assist their analysis and decision-making process. Recommendations will be made based on the 

default targets and the user-defined targets in the tool. Policies may be applied with different 

start and end parameters, range of application, and other additional decision variables. Every 

freedom in the definition of policies complicates the most favourable selection of parameters 

to accomplish and satisfy all trade-offs in policy goals. All use cases related to desired 

recommendations must be specified in the DSS component such as the number of 

recommendations expected, the details that are given per each recommendation, and the desired 

response time per execution. 

4.5. Data Sharing Tools 
The Data Sharing Tools pillar is defined to allow communication between all partners in the 

sense of data and model sharing, and to automate the updating of models and shared data used 

by each of the WPs that make up the SLNAE tool. A protocol will be needed to manage the 

process to upload new data versions to the platform, like file versioning and folder structure, 

and to notify the required people in the NXG pipeline.  

4.6. Graphical User interface (GUI) 
The GUI pillar represents an interactive system with visual components and graphical 

representations that enable the SHs, and more specifically, the end-users to access the SLNAE 

platform. Thus, the objectives and sections of the GUI are identified based on end-user needs.  
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Therefore, the first step has been the recognition of potential users in which two particular 

groups have been identified based on specific presentation of the information: technical users 

and strategic users. The two types of views (related to each group of potential viewers)  should 

be interlinked, and the users should have the option to move from one view to the other in each 

scenario. Each type has a different level of detail and a different way of visualization. The 

information is available to everybody with no restriction on different users. The two types of 

views are: 

• Technical view: This view is given for users with some level of knowledge and 

expectation of an extensive and detailed study. It enables a depth analysis of the 

implications and impacts of policies in the WEFE sectors and variables, numerical 

evaluations, cause-effect relations, and statistics for scientific reasoning. Examples of 

technical users are scientists and academics. 

• Strategic view: This view is given for the users that expect synthesized and clear 

information with colourful simple graphics and diagrams. Visualization should 

comprise as few words and numbers as possible of the simulation results and present 

the indicators evaluation and the required comparisons. Examples of technical users are 

policymakers, authorities, associations, and general users. 

Based on the specific aims of the GUI, use cases will be classified into different components: 

• User interface – General: This component is referring to the initial user interface where 

an explanation of the project and its methodologies will be given, information about the 

CSs will be presented, and the user will be able to sign up, log in, and manage its profile, 

setting, and other user’s functionalities. 

• User interface –Simulations Management: This user interface presents the option to 

start new simulations, access the saved ones, duplicate/edit/remove saved simulations, 

and presents the link to the results and comparisons of simulations. 

• User interface – Simulations Configuration: There will be two stages to configuring and 

launching a simulation. The configuration of a simulation is based on the selection of 

CS, the selection of the starting point or reference pathway, the specification of whether 

uncertainty is applied or not in the simulation process, and the selection of user-defined 

goals, targets, and indicators for the evaluation of policy packages. In each CS, there 

will be fixed goals and targets either mandated by law or defined by SHs. 

• User interface – Simulation: The other stage is the simulation itself. It will be a new 

screen with the simulation view where the user will be able to select available policy 

packages and define the simulation step. The Decision Support System (DSS) will be 

considered at this stage given recommendations under the user’s requests. 

• User interface – Simulation Results: The affected variables from the SDMs, indicators, 

and visualizations should be provided at each step of the simulation process presenting 

how the application of a policy from a nexus sector affects another nexus sector. All 

variables’ relations should be integrated into the SDMs.  

• User interface – Simulations Comparison: Another important component to consider in 

the GUI is the comparability between different policy package executions and their 

implications in the indicators and targets to achieve the policy goals. The GUI workflow 
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may be a mix between a step-by-step visualization and a dashboard to present results 

and comparisons. Comparisons between different simulations in the same CS and 

against different CSs are needed. 

This is the pillar that may suffer more modifications in its design during the first two years of 

the project (M24). This is because the SHs' contributions and views are expected with the aim 

to generate a tool useful for them. WP4 will focus workshops WS2 and WS3 on these topics. 

In terms of planning, there will be no delays since T4.5 is expected to start at M24. 

Additionally, during the September 2022 annual project meeting in Riga (M12), there will be a 

workshop to co-design in more detail the visualization tool, which will be detailed in the next 

version of this Deliverable. Moreover, mock-ups will be presented to help with the SLNAE 

GUI definition process. 
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3. Use cases 
This section describes the use cases methodology implemented in WP4 to facilitate the 

identification of needed features in the development of the SLNAE. It aims to identify, clarify 

and organize system requirements with three main essential elements: 

- The actor. The system user, being a single or group of users 

- The goal. The successful outcome after completing a process 

- The system. The needed steps to achieve the goal, including necessary preconditions or 

other requirements 

 

A complete use case includes one main but also alternative flows to achieve a goal. For this 

reason, for each of the flows, it is important to highlight what triggers it and which are the 

preconditions needed. The definition of use cases should be technology agnostic, referring only 

to the business logic needed by actors to achieve the goal, allowing developers to use the best 

technology according to the list of requirements. The most detailed the use cases can be 

provided, the most completed list of requirements will be achieved. In this scenario, Figure 2 

presents the schema of the proposed methodology to collect the required information. 

 

 

Figure 2. Use case methodological approach workflow 

3.1. The actors(users) 
The definition of the use cases is centred on the actors, the users. The potential users of the 

SLNAE have been distinguished into two main groups according to the main functionalities as 

end-users: Strategic users (users who need simple but clear UIs and functionalities, which aim 

is to take strategic decisions) and Technical users (users with a deeper technical knowledge that 

aim to realize complex analysis or simulations). The detailed definition of both groups, even 

new user identifications, is ongoing in the scope of the co-creation framework and workshops 
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organized by WP1 team in coordination with the CSs (WP5). Furthermore, the users within 

these groups can be directly linked to the tree-tier SHs analysis carried out by WP5 (MS6 

Stakeholder register, resulting stakeholder mapping). 

On the other side, there is a potential third group of users, called data providers, that will feed 

the SLNAE with different sources of data. At the moment, it is expected data from WP2 related 

to the biophysical and socio-economic modelling, the SDMs from WP3 to be integrated into 

the SLNAE, Nexus indicators and policies definitions from CSs, WP1 and WP5, or CSs 

information from WP5. All these aspects are further introduced in section 5.3 Nexogenesis Data 

sharing tools. 

Finally, the last type of user expected is the administrator, which will have the responsibility 

to configure, update and maintain any of the SLNAE modules and infrastructure. 

 
Table 1. Groups of users involved in the final SLNAE operation 

User group Description Examples 

Strategic users People using the tool as a DSS to understand 

policy effects and impacts, and to create or 

prioritize policy-making strategies  

Policy makers 

Technical users People using the tool to investigate at a low 

level the NEXUS interlinkages and policy 

impacts, and the implication of 

transboundary decisions 

Project partners, 

nexus researchers 

or technical staff 

from stakeholder 

bodies 

Data providers Project partners or River basin data 

responsible with aims to update needed data 

to run the tool 

CMCC, UHE, UTH 

staff 

Administrator Administrators of the tool. EUT staff 

 

3.2. The use cases template 
The consortium has been working on the definition of uses cases and user requirements based 

on a set of meetings in the scope of WP4 along with all deliverables and documentation 

provided by the consortium. To get a complete list of use cases, it has been shared and discussed 

with the project partners, mainly WPLs and CS leaders, a template for its definition. The 

template includes the columns described in Table 2 to define each SLNAE use case.  

 
Table 2. Descriptive fields for use case definition 

Field Content  

ID [Unique ID of this use case] 

Description [Describe the goal and context of this use case. This is 

usually an expanded version of what you entered in the 

"Title" field.] 
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Component [Select a component of SLNAE (The list of components 

can be updated in the sheet List of items), for what the use 

case described is focused on] 

Goal [Enter the goal of the use case - preferably as a short, active 

verb phrase] 

Preconditions [Describe the state the system is in before the first event in 

this use case. What is needed to allow this use case] 

Triggers [Which is the event, the real need, the action that fires this 

use case usage] 

Success post condition [Describe the state the system is in after all the events in 

this use case have taken place.] 

Primary Actor [A person or a WP partner that interacts with your 

component to achieve the goal of this use case. ] 

Main course [Brief description and list of steps the actor should do to 

achieve the success post conditions, from the 

preconditions. This is the key point in the use cases 

description] 

Extensions [Describe all the other scenarios for this use case - 

including exceptions and error cases.] 

Frequency of Use [How often will this use case be used?] 

Status [Development status] 

Owner [Who owns this use case in the project team? Please add the 

partner acronym] 

Priority [Priority of this use case. Use: High, Medium, Low] 

 

The SLNAE components organization is based on the WP4 pillars definition (section 2 Pillars). 

The following elements have been identified: 

- SLNAE-User Interface 

o General 

o Simulation configuration 

o Simulation management 

o Simulation 

o Simulation results 

o Simulation comparison 

- SLNAE-Backend 

- SLNAE-DSS 

- SLNAE-Data Sharing Tool 

The SLNAE-User Interface has been divided into six subcategories in order to achieve better 

granularity, since it was expected to contain many of the use cases due to the stories definition 

(i.e. final functionalities) mainly start there.  

After a first iteration of feedback request, it has been created a simpler template (without some 

columns) in order to facilitate a quick assessment of the required use cases by non-technical 
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partners. On this basis, the complete table is generated. The basic template contains the 

following columns: 

- ID/code 

- Description 

- Component 

- Goal 

- System users 

- Main course(steps) 

- Potential requirements (used to identify non-functional requirements) 

- Comments 

Table AI.1, in Annex I, shows the complete list of use cases describing the main 

functionalities that the SLNAE and its components have to include according to their 

requirements. So far, thirty-six (36) use cases have been identified, but new others can be 

identified during the first two years of the project based on SHs feedback (collected in 

workshops WS2 or WS3). The final version of the use cases will be presented in the next 

version of this deliverable. 
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4. Requirements 
 

The IEEE Standard Glossary of Software Engineering Terminology [2] defines a requirement 

as: 

1) A condition or capability needed by a stakeholder to solve a problem or achieve an 

objective. 

2) A condition or capability that must be met or possessed by a solution or solution 

component to satisfy a contract, standard, specification, or other formally imposed 

documents. 

3) A documented representation of a condition or capability as in (1) or (2). 

In this scenario, a system requirements specification collects information on the requirements 

for a tool or service, and describes what the software will do and how it will be expected to 

perform. It is composed by functional and non-functional requirements. Both types are essential 

for a clear system characteristics and components identification and, thus, for a successful and 

smooth development stage. The former group covers all those functionalities a system must 

offer and what it must do. In case the system does not meet a functional requirement, it will fail 

in achieving their final objective. In parallel, the later group collects all those requirements that 

describe how the system works, and are focused on how it goes about delivering a specific 

function. If non-functional requirements are not met, final users may become frustrated with 

how the system works and, consequently, it will also fail in achieving their objectives. 

Thus, following the methodology proposed in WP4, the system requirements specification is 

extracted from the Use Cases definition (section 3 Use cases). Here, WP4 software technicians 

have analysed the proposed use cases and have generated the system requirements specification 

table of functional and non-functional system requirements the SLNAE tool has to provide and 

implement. 
Table 3. Descriptive fields for requirements definition 

Field Content  

ID [Unique ID of the requirement. FR-X for functional 

requirements, an NFR-Y for non-functional requirements]  

Use Case ID [Use Case from where the requirement has been identified] 

Component [Select a component of SLNAE (The list of components 

can be updated in the sheet List of items), for what the 

requirement described is focused on] 

Description [Describe the goal and context of requirement] 

Details [Further details and clarifications] 

Prerequisites [Important constraint that must be accomplished] 

To be iterated [Indicated whether a requirement can be modified based on 

SHs’ feedback] 
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Table 3 describes the information required to define a system requirement. It is important to 

note that some requirements are candidates to be modified during the first half of the project 

based on the SHs’ feedback collected in WS2 and WS3. This possibility is indicated in the last 

column of Table 3.  

So far, seventy-seven (77) requirements have been identified and extracted from the proposed 

use cases. Sixty-eight functional requirements (68) and nine (9) non-functional requirements. 
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5. SLNAE Design 
The final goal of task T4.1 is to establish the basis and provide the design for the implementation 

and development of the SLNAE. To achieve so, first, use cases and requirements have been 

identified, as shown in the previous sections, by considering the SHs (including also NXG 

partners) necessities. 

Below, the technical design of the SLNAE platform is presented, which provides a response to 

all the system requirements identified so far. This design includes both, a high-level architecture 

schema where all components and information flows are represented, and a low-level 

description of such elements. Finally, the required software technologies necessary to construct 

the systems are also proposed. 

It is important to recap that the SLNAE tool will be used both during the NXG project and after 

its finalization. In the first case, the engine will be used to identify optimal policy packages to 

maximise goals and targets defined by SHs in the co-creation framework cycle. This necessity 

forces WP4 to start working first on the AI engine in order to be able to have the system ready 

when needed. Later, the online web platform will be built around the engine to offer the final 

SLNAE framework. 

5.1. General overview 
 

Figure 3 presents a general overview of the SLNAE platform where all the actors involved in 

the NXG WEFE approach can be identified. The proposed SLNAE global architecture is 

organized into four inter-related components, each one representing a key element of the NXG 

project. Furthermore, each component is aligned with one, or various, WP4 pillars. 

The first component corresponds to the Stakeholders & co-creation framework, which 

represents WP1 and WP5 responsibilities and outcomes, and is aligned to the WEFE Policy 

Framework and WEFE Targets & Indicators pillars. The second component covers the Nexus 

integration aspect of the NXG project. It integrates the technical WPs (WP2 and WP3), and is 

aligned to the Nexus complexity modelling pillar. Moreover, it is also indirectly linked to the 

WEFE Policy Framework and WEFE Targets & Indicators pillars since these concepts will be 

embedded into the SDMs. 

The third component corresponds to the SLNAE itself, developed in WP4. It is mainly linked 

to all the pillars, since all of them will be finally integrated there, although it will particularly 

focus on the DSS functionalities and Graphical User interface ones. Finally, as an extension of 

the SLNAE platform, the NXG Data Repositories & Dara Sharing Tools component is related 

to the Data Sharing Tools pillar, and contains data from all WPs (from WP1 to WP5). The WPs 

generated information will be stored in the NXG Data Sharing tool, and directly and 

automatically integrated into the SLNAE. Further information regarding data created by each 

WP and shared across other WPs is presented in section 5.3.1 
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Figure 3. SLNAE platform schema 

Below, all the SLNAE components are introduced, and an initial design is proposed. Each 

decision and functionality proposal is linked to the corresponding requirement from table AII.1. 

5.2. SLNAE 
The SLNAE final platform is designed as an online tool (NFR-03 to NFR-05) to enable remote 

access to the users. In this sense, the users will not need additional Hardware resources since a 

browser is the only requirement to access and use it. 

The platform architecture is divided into seven modules, as can be seen in Figure 3, each one 

with a specific objective and responsibility: 

- SLNAE Core service 

- Web Service API 

- SLNAE database 

- SLNAE GUI 

- Simulation Policy Framework 

- Self-Learning engine 

- Decision Support System 

- Analytical Engine 

Python1 programming language will be used to develop such modules, and special attention 

will be put to the solution components testing. Continuous delivery methodologies will enable 

automated and continuous validation, integration and deployment of new developments. 

Three environments are proposed for the development, test, and final deployment of the 

SLNAE platform: 

- Development: First environment where all developments will be tested by the technical 

team. A series of automatic unit-tests, end-to-end tests and integration tests will be 

defined to cover different issues such as Global components, Local components, load 

 
1 https://www.python.org/  

https://www.python.org/
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testing, browsers compatibility, screen resolutions, security, resilience, scalability 

and/or interoperability. 

- Staging: Once developments are ready and validated in the DEV environment, they will 

be deployed into the Staging one. Here, the NXG partners and CSs will be able to access 

and use the new additions. It will enable a second testing phase, more focused on the 

context validation and correct functioning of Nexus logics (e.g. policies, goals, etc). 

- Production: Final environment where the SLNAE tool will be publicly available. 

The SLNAE Coordination & Integration service will manage all these tasks and processes to 

ensure a high-quality system in terms of availability, capacity, interoperability, performance, 

reliability, robustness, safety, security, resilience and usability (NFR-01 to NFR-09). 

5.2.1. SLNAE Core service 
The SLNAE Core service will principally coordinate all SLNAE platform and module 

communication, and will monitor the status of the services. 

It will implement the required mechanisms to persist and load data from the SLNAE Data 

repositories. In this context, it will trigger and coordinate the automatic processes to integrate 

other WPs outputs into the system logic. To do so, it will be connected to the Data Sharing Tool 

and will consume new information regarding policies, goals, targets, indicators, CS information 

and SDMs. Here, the I18N module will be in charge of enabling text translation based on the 

user profile (FR-07, English, Greek, Bulgarian, Italian, German, Romanian, Latvian, 

Lithuanian). 

Finally, the SLNAE Core service will also implement an authentication and authorization 

framework to support the Web Service API module by validating all incoming communications. 

It will be based on the JSON Web Tokens2 (JWT) standard, which is an open, industry-standard 

RFC-75193 method for representing claims securely between two parties. This framework will 

be based on the flask-jwt4 and flask-jwt-extended5 Python libraries. A guest log-in mode will 

be implemented but, although authenticated access will not be mandatory, some advanced 

functionalities will only be available for registered users. 

To simplify all the data flows and platform development, an object-oriented programming 

paradigm will be integrated. Thus, the following software entities will be modelled and will be 

available by other platform modules to implement its logic. 

- CS: To represent the CS entity.  

- Policy Goal: To represent the Policy Goal entity. 

- Policy Target: To represent the Policy Target entity. 

- Indicator: To represent the indicator entity, including WEFE footprint indicators. 

- SDM: To represent the SDM entity. 

- Simulation: To represent the simulation entity. 

- Users: To represent the user entity. 

 
2 https://jwt.io/ 
3 https://tools.ietf.org/html/rfc7519 
4 https://pythonhosted.org/Flask-JWT/  
5 https://flask-jwt-extended.readthedocs.io/en/stable/  

https://jwt.io/
https://tools.ietf.org/html/rfc7519
https://pythonhosted.org/Flask-JWT/
https://flask-jwt-extended.readthedocs.io/en/stable/
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The expert programming principle will also be integrated, thus each software entity will 

implement the necessary entity-related methods. 

An ORM, implemented with SQLAlchemy6 Python library, will manage the mapping and 

operations between SLNAE tool and NXG Data repositories. 

 

5.2.2. Web Service API 
The Web Service API provides the communication between the SLNAE GUI and the SLNAE 

platform or backend. It is designed as a RESTful stateless service that implements a REST 

(Representational State Transfer) architecture. The client-server communication uses JSON 

(JavaScript Object Notation) data format over the HTTPS (Hypertext Transfer Protocol Secure) 

protocol. 

The Web Service endpoints listed in  

 

Table 4 will be provided (FR-54). 

 
Table 4. SLNAE Web Service endpoints 

Web Service Endpoint 
HTTP 

methods 

Requires 

authenticated 

JWT 

Description 

Request 

parameters 

/slnae/case_studies 

/slnae/case_studies/id 

GET No To obtain CSs’ 

information 

CS ID 

/slnae/policy_goals 

/slnae/policy_goals/id 

GET No To obtain default 

Policy Goals and 

targets 

information 

Policy Goal 

ID 

/slnae/indicators 

/slnae/indicators/id 

GET No To obtain default 

CS and WEFE 

footprint 

indicators 

information 

Indicator ID 

/slnae/policies 

/slnae/policies/id 

GET No To obtain 

policies 

information 

Policy ID 

/slnae/simulations 

/slnae/simulations/id 

/slnae/simulations/id/run 

GET, 

POST, 

DELETE 

Yes To manage 

simulations 

Simulation 

parameters 

/slnae/users GET, POST Yes Manage user’s 

information and 

profile 

User’s 

parameters 

 
6 https://www.sqlalchemy.org/  

https://www.sqlalchemy.org/
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/slnae/login POST No To validate 

authentication 

credentials and 

generate JWT 

Email and 

encrypted 

password 

/slnae/logout GET Yes To sign out from 

the session 

 

/slnae/users GET, POST Yes Manage user’s 

information and 

profile 

User’s 

parameters 

 

Additional endpoints will be added to the Web Service interface in case it is needed. 

Finally, the Web Service will be deployed in the open-source HTTP Apache Server7 to provide 

a secure, efficient and extensible tool that enables HTTP services in sync with the current HTTP 

standards. 

5.2.3. SLNAE database 
An internal SQL database will provide persistence functionalities to store all the information 

related to the SLNAE entities (FR-55). It will be managed by the ORM, which will 

transparently implement all the CRUD (Create, Read, Update and Delete) methods and will 

simplify their management. 

The PostgreSQL8 open-source technology will be used for the implementation of this 

component. 

5.2.4. SLNAE GUI 
The SLNAE GUI is the front view of the platform and will enable users to interact with the 

NXG project research and outcomes. It will provide the required mechanisms to run WEFE 

simulations by applying Nexus policies in each of the five NXG CSs. Furthermore, it will let 

the user analyse the impacts on the interlinked nexus sectors, in terms of policy goals and WEFE 

footprint indicators achievement, to finally understand which are the best policy packages in 

each scenario. 

Based on the identified requirements, sixteen views have been identified. The proposed SLNAE 

GUI views flow is presented in Figure 4. 

 
7 https://httpd.apache.org/  
8 https://www.postgresql.org/  

https://httpd.apache.org/
https://www.postgresql.org/
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Figure 4. SLNAE GUI views Flow 

The SLNAE GUI entry point is the Login page, where the user will be requested to log in (FR-

02). In case it is not registered yet, it will be able to access the Signup page to start the 

registration process (FR-01), or to access the platform as a guest user (FR-04). Furthermore, 

the Password recovery (FR-05) view is also accessible from the Login page. Also, information 

regarding the data and cookie policies (FR-09) will be presented to the user on this initial page, 

and an option to remember the credentials will be included in the login form. 

Once logged in, the user will be redirected to the Main view (FR-10). Here, general information 

about the NGX project will be presented. From this page, four possibilities are available to the 

user. It can go to the Profile section (FR-06) where, in case it is registered into the system, the 

user’s information is shown and can be modified (username, email). Also, in any case, the user 

can select the platform language (FR-07). 

The second option redirects the user to the CS area (FR-11 and FR-12), where specific 

information and CSs’ characteristics will be displayed. 

The third option is the Simulations Management view (FR-20), which will be always accessible 

independently of the view (FR-14). It will present, in a table structure, all the simulations 

previously saved by the user, and will have mechanisms to load (FR-22), see the results (FR-

21), rename (FR-24), duplicate (FR-25), compare (by selecting more than one entry, FR-26) or 
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delete (FR-23) them. In case the user is not registered, only the simulations created during the 

current user session will be presented. 

Finally, the fourth option (which will be always accessible independently of the view, FR-13) 

redirects the user to the Simulation Configuration (FR-18) view, a wizard-based page where 

the user will be able to configure a new simulation. To do so, the user can select the CS and the 

reference pathway, can activate the uncertainty mode, and can define a set of user-defined goals, 

targets and WEFE and CSs indicators (FR-19). Once a simulation is configured, the Simulation 

(FR-27) view, the main SLNAE functionality, will be presented to the user. Here, a dynamic 

view will enable the user to interact with the WEFE simulation framework. The view will be 

organized per sections, so the user always has visible the most important nexus information, 

such as the time horizon, the policies goals level of achievement or the CS map. Moreover, in 

order to have other information as available as possible, a flexible tabs schema is designed. The 

following sections are proposed: 

- Time horizon (FR-28): it will show the simulation step, from the year 2020 to the year 

2050 in a year timestep. It will have functions to move forward or backward (FR-29) in 

the simulation horizon time in user-defined timesteps (e.g. to advance four years, FR-

30). Additionally, the applied policies will be presented (FR-34) so the user can disapply 

them (FR-33). 

- Default policy goals, targets and WEFE footprint indicators (FR-39): will show the level 

of achievement of the CS predefined policy goals, targets and WEFE footprint 

indicators. Uncertainty in the computations will be shown in case it is requested. 

- User-defined policy goals, targets and WEFE footprint indicators (FR-40): will show 

the level of achievement of the user-defined policy goals, targets and WEFE footprint 

indicators. Uncertainty in the computations will be shown in case it is requested. 

- CS map: a central view to represent the CS (e.g. regional or transboundary case).  

- Available tokens (FR-37): Information about available tokens will be always shown. 

- Policies inventory (FR-31): It will present the available policies to be applied. Here, a 

pop-up function will be used to show their information, and restrictions between them 

will be also considered, thus the restricted ones will be hidden (FR-36, FR-38). From 

there, a policy can be selected (FR-32) and configured (FR-35) to be applied at a specific 

year. 

- Indicators inventory: Other available indicators' levels of achievement will be 

presented. 

In parallel, the user can access the SLNAE DSS advice, which will provide support to identify 

the most optimal policy packages. Advice focused on the maximization of default policy goals 

(FR-43) will be immediately available, but advice targeting the user-defined policy goals (FR-

44) will require time for computation, thus the user will have to trigger it in case it is needed. 

This second type of advice will present optimal policy packages as they are identified by the 

DSS engine, and the user will be always aware of the computations. 

Once the user considers that a simulation is finalized, the Simulation results view (FR-46) 

presents a summary of the process. Here, two types of views are available: a basic view (FR-

47) and an advanced (FR-48) one. In the basic view, only applied policies and the indicator 

level of achievement are presented. On the other hand, the advanced view presents all the Nexus 

data and its evolution during the simulation (FR-50), considering also data uncertainty (FR-49). 
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The details of the proposed functionalities and what and how data will be shown will be 

discussed with SHs and documented in the final version of this deliverable. 

Finally, the user will be asked whether the simulation has to be stored (FR-42) or not for future 

usage (e.g. in a comparison). The way how simulations will be compared in the Comparison 

view (FR-51) will be also discussed with SHs. At least, comparisons among simulations 

corresponding to the same CS (FR-52) will be enabled by comparing the default goals, and 

comparisons among different CS simulations (FR-53) will be enabled by comparing the 

common WEFE footprint indicators. 

The iteration and finalization of SLNAE GUI functionalities and design is the main WP4 target 

for workshops WS2 and WS3. In WS2, the current design will be presented to the SHs, and 

first feedback and ideas are expected. On this basis, WP4 will proceed to develop the required 

mockups to graphically describe the GUI views. Then, in the WS3, these mockups will be 

presented to the SHs to have a final discussion and feedback. All these decisions will be 

incorporated into the final version of this deliverable. 

HTML, JS and CSS will be used to build the GUI, and the following frameworks are identified 

to implement the proposed functionalities: 

- Angular9: Framework for web applications development. 

- JWT10: Library for representing claims securely between two parties using industry 

standard RFC 7519. 

- D311: a JavaScript library for manipulating documents based on data. 

- Leaflet12: a JavaScript library for friendly interactive maps. 

5.2.5. Self-learning engine and AI algorithms 
The self-learning engine is considered the core of the SLNAE platform and one of the most 

important research, development, and outcome of the NXG project. The self-learning engine 

will be used as a recommendation tool for decision making in i) policy package definition 

during the project, and ii) policy package advice in the final online tool.  

In the first case, the self-learning engine will be used in the co-creation framework cycle to 

generate optimal policy packages given a set of policies and policy goals and targets defined 

by the SHs in each CS. Once generated, the identified policy packages will be evaluated by the 

SHs and a new learning iteration will be carried out if possible (at least in frontrunner CSs). 

 
9 https://angular.io/  
10 https://jwt.io/  
11 https://d3js.org/  
12 https://leafletjs.com/  

https://angular.io/
https://jwt.io/
https://d3js.org/
https://leafletjs.com/
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Figure 5. NXG co-creation framework for Nexus Policy packages identification 

The second case refers to the online DSS, which will provide policy package advice to the 

platform users. As it is introduced in the previous section, the users will be provided with two 

types of advice. The first one will be focused to accomplish CS predefined goals and targets, 

which will be based on the outputs of the co-creation framework for policy governance.  

The policy package identification task can be understood as an optimal control problem, where 

decisions have to be made along time to select policy packages with the aim to achieve (or 

maximize) certain metrics, such as policy goals targets or WEFE footprint indicators, at a 

certain instant of time. 

Given the considerable number of policy combinations, the scenario restrictions (e.g. budgets 

or allowed policy combinations), the huge quantity of instants when a decision can be made, or 

the underlying complexity and non-linearity of the problem, its solution is non-trivial. 

Moreover, if data uncertainty is taken into account, the problem becomes non-deterministic, 

thus it is even more difficult to confront. 

Below, the algorithmic methodology proposed to implement the self-learning engine is 

presented. It is based on the definition and self-training of a set of intelligent AI-powered 

agents. Once trained, these agents will be able to find the most efficient ways for decision-

making in dynamic and uncertain systems based on cost function definitions that represent the 

nexus concerns and desired policy goals. 

We propose Reinforcement Learning (RL) [3], a hybrid family of algorithms between control 

theory and AI, to deal with the task of decision-making in policy packages application for 

achieving different targets (goals). Moreover, taking into account the problem complexity, it 

becomes also necessary to include function approximations able to deal with it. In this scenario, 

Deep Learning (DL) provides the required power and capabilities to deal with non-linearities 

and high-dimensional tasks. As a result, the Deep Reinforcement Learning family of algorithms 

is proposed. 

5.2.5.1. MDP formalization 

In the control problem scenario, the task is formalized as a Markov Decision Process (MDP). 

An MDP provides a mathematical framework for modelling decision-making in a sequential, 

stochastic, and discrete-time environment.  
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The formalization consists of a 5-tuple:  

• A set of states 𝑆  

• A set of actions 𝐴 

• A scalar reward function 𝑅 ⊂ ℝ that maps state-action pairs to scalar values (a reward 

signal) 

• A state transition probability distribution 𝑃 that defines the dynamics of the MDP; from 

all states 𝑠 ∈ 𝑆 to all their successors 𝑠′ ∈ 𝑆  

• A discounted factor 𝛾 ∈ [0,1], allows weighing the importance of future rewards over 

current ones  

Theoretically, in its basic form, the Nexus policy-decision-making problem can be 

mathematically formalized as a fully observable MDP, where the dynamic transitions are given 

by the SDMs.  

• The MDP state must be correctly designed and must contain all the required information 

from the SDMs (the nexus WEFE) to ensure that the DSS models can provide consistent 

recommendations by identifying the necessities in each situation. In each CS, it will be 

discussed with experts to identify which are the key parameters. Additionally, other 

information must be considered, such as the year, the policies state, or the available 

tokens. 

• The action space defines the decisions to be taken in the environment. The decision-

making is based on discrete actions defined by the available policy packages in a given 

year (a combination of policies). 

• The design of the reward function is one of the most complex parts of the MDP 

definition since it must guide the agent to the right path. The reward function will be 

based on the selected policy targets and WEFE indicators to achieve the policy goals. 

Usually, there will be more than one indicator to consider given a multi-objective 

problem. More than one expression has to be taken into account to accurately define the 

reward function. This implies balancing the relative importance of each concept and 

multiple indicators will be aggregated to a general one.  

Given an MDP, the random variables 𝑠′ and r depend on the preceding state and action. That 
is, the probability of those variables occurring at the same time 𝑡 is conditioned on the previous 
state 𝑠 ∈ 𝑆 and the action 𝑎 ∈ 𝐴 taken, as defined in the following equation: 
 

𝑝(𝑠′, 𝑟|𝑠, 𝑎) ≐ Pr{𝑆𝑡 = 𝑠′, 𝑅𝑡 = 𝑟|𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎} 
 

for all 𝑠′, 𝑠 ∈ 𝑆, 𝑟 ∈ 𝑅 and 𝑎 ∈ 𝐴. In this case, the Markov property is achieved. Recall that the 
objective of an MDP is to maximize the expected discounted cumulative reward in a trajectory.  
A sequence of transitions, such as {𝑆0, 𝐴0, 𝑆1, 𝑅1, 𝐴1, 𝑆2, 𝑅2, 𝐴2, 𝑆3, 𝑅3, … , 𝑆T−1, 𝐴T−1, 𝑆𝑇 , 𝑅T}, 
defines a trajectory through the MDP. The equation below defines the expected reward in an 
episodic MDP.  
 

𝐺𝑡 ≐  𝑅𝑡+1 +  𝛾𝑅𝑡+2 +  𝛾2𝑅𝑡+2 + ⋯ =  ∑ 𝛾𝑘𝑅𝑡+𝑘+1 = 

𝑇−𝑡−1

𝑘=0

𝑅𝑡+1 +  𝛾𝐺𝑡+1 

 
where T corresponds to the last time-step of the episode. Timestep T leads to terminal states.  
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5.2.5.2. Reinforcement Learning 

RL is a computational approach in the ML (AI) field that provides support in MDP systems by 

trial-and-error learning guided by the expected cumulative future reward. The RL model's aim 

is to learn what action to do in a given state with the final goal of maximizing the numerical 

reward function [3]. An RL model is a function that maps states to actions based on experience. 

Solving an RL task means finding a policy π that maximizes the reward signal over the long 

run. Most RL algorithms involve estimating value functions that estimate how good it is for the 

agent to be in a given state, or how good it is to perform a given action in a given state. 

In the learning process, the decision-maker is called the agent, and the thing it interacts with is 

the environment. These elements interact continuously through an iterative process where the 

agent selects actions, and the environment responds to these actions with reward signals and 

presents new situations to the agent. During this training process, the agent continuously 

improves a policy to maximize the expected future reward over time through its choice of 

actions. The ultimate goal of the agent is to learn a policy π that maps states to actions with the 

aim of generating the highest cumulative reward through the agent-environment interaction. 

The iterative agent-environment interaction process is shown in Figure 6. 

 
Figure 6. Reinforcement Learning interaction flow 

The self-training process is described as follows: 

For all defined iterations, at each timestep 𝑡:  

1. The agent observes the current state of the environment 𝑆𝑡  

2. The agent chooses an action 𝐴𝑡 in the given state 𝑆𝑡 

3. This action and the system dynamics cause a transition between states in the 

environment. A reward signal 𝑅𝑡+1 based on the consequences of the action taken and 

the stochasticity of the MDP is provided to the agent. Moreover, the next discrete-time 

state, 𝑆𝑡+1, is also given to the agent in order to provide the current situation of the 

system. 

4. The agent updates the policy π based on the previous interaction with the environment, 

denoted by the transition tuple < 𝑆𝑡, 𝐴𝑡 , 𝑆𝑡+1, 𝑅𝑡+1 > 

5. The current state 𝑆𝑡 from the environment is updated with the new one 𝑆𝑡+1 

6. Go back to step 1. The process starts again until the number of iterations is completed 

Standard RL maximizes the expected sum of rewards as presented below: 

∑ 𝔼(𝑆𝑡,𝐴𝑡)~𝜌𝜋
[𝑅(𝑆𝑡, 𝐴𝑡

𝑡
)] 

In the previous equation 𝜌𝜋 denotes the transitions following policy 𝜋. 
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Dynamic Programming [4] and Monte Carlo [5] methods are considered basic forms of RL, 

since both provide (restricted and limited) solutions to the MDP problem. One of the most 

popular tabular RL algorithms is Q-Learning [6], a temporal-difference [7] RL methodology. 

The classical Q-Learning algorithm learns a state-action value function by trial-and-error. The 

state-action pair values are updated on every new iteration. These values represent the expected 

future reward from being on each state-action pair in the environment and are used to know 

which decision has the higher expectation.  

During the training phase, unknown states are visited to allow exploration and approximate the 

values in the so-called Q-table. There is an exploration and exploitation dilemma during the 

training phases. While the RL agent is learning expected value and making decisions in the 

environment based on that, the agent must also explore other alternatives to correct any 

deviation in the Q-function. Therefore, during data collection in agent-environment 

interactions, the agent will balance the selection of random action with the selection of the best-

known action. 

One of the major challenges in RL is the right reward function definition that must guide the 

agent in the right learning direction. An example of a simple reward function is the following: 

 

𝑅(𝑆) = {
0, 𝑆 𝑛𝑜𝑡 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙
0, 𝑆 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑎𝑛𝑑 𝑔𝑜𝑎𝑙𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑 
1, 𝑆 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑎𝑛𝑑 𝑔𝑜𝑎𝑙𝑠 𝑎𝑟𝑒 𝑎𝑐ℎ𝑖𝑒𝑣𝑒𝑑

 

 

This reward function is sparse since for all states that are not terminal it is 0, and it is different 

than 0 when all goals are achieved in a terminal state. Therefore, there are two main problems 

in the reward function definition: reward sparsity and credit assignment problems. This second 

issue is related to the difficulty to identify which actions, in an MDP trajectory, guide the system 

to the best or poor rewards. 

Q-Learning, such as other tabular RL methods, have some limitations: 

• The agent needs a lot of interactions with the environment to approximate well the value 

function and learn an acceptable policy π. If SDMs are slow, the learning will be also 

slow. Thus, python SDMs must be optimized to give transitions in the lowest time 

possible. 

• The action space can be very complex to manage for classical RL. If the number of 

available combinations of policies at each step is very big, learning all state-action 

values in a tabular form becomes very challenging and even unfeasible.  

• Similarly, a high-dimensional or continuous state space is not feasible to consider in 

tabular algorithms. 

In its classical tabular approach, RL is not able to deal with high-dimensional and non-linear 

problems due to the curse of dimensionality, which is the exponential growth of states and 

actions when the problem has a high-dimensional or continuous state and/or action spaces. In 

order to overcome these limitations, RL methodologies have been recently combined with DL 

techniques to generate the so-called Deep Reinforcement Learning (DRL) algorithms family. 

Here, Deep Neural Networks (NN) represent the agent’s policy and are used as a function 

approximator of the complexity behind the state and action spaces. 

5.2.5.3. Deep Reinforcement Learning 

DRL is the result of combining Deep Neural Networks (DNN – DL) together with RL where 

the tabular functions are substituted by DNN. In these types of algorithms, information is not 
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explicitly stored for every single state or every state-action pair. What it is done here, is a more 

compact representation that generalizes across states or states and actions. It reduces the 

resources needed to store all the information, computation, and experience needed to converge 

to a reasonable solution in larger problems, even when the state space is continuous. For an n-

dimensional state space and a discrete action space containing m actions: 

• A neural network that defines the state-action value function is a function from 𝑅𝑛 𝑥 𝑚 

to 𝑅 

• A neural network that defines the policy function is a function from 𝑅𝑛 to 𝑅𝑚 

There are three main types of DRL algorithms, as in RL: 

• Value-based: the algorithm learns the value function V or Q, or the advantage function 

A. 

• Policy-based: the algorithm learns the policy function directly. 

• Actor-critic: Actor–critic algorithms learn both, policies, and value functions. The actor 

is the parametric policy, and the critic learns value approximations in order to criticize 

the behaviour of the actor in such a way that the actor can more efficiently learn. Actor-

critic algorithms allow high-dimensional and continuous action spaces, unlike value-

based algorithms. 

 

Value-based methods 

Under the value-based category, Deep Q-Learning (DQN) is the first implementation of the Q-

Learning algorithm to DL. In this case, instead of learning a value per each state-action pair as 

it is done in Q-Learning, the DNN has as input the state and outputs a probability per each 

action from the action space. Therefore, the DNN learns a Q-value probability per each action 

given a state.  

RL is known to be unstable, or divergent, when a nonlinear function approximator, such as a 

neural network, is used to represent the state-action value function [8]. This instability comes 

from i) the correlations present in the sequence of observations, ii) the fact that small updates 

to Q may significantly change the policy and the data distribution and, iii) the correlations 

between Q and the target values 𝛾 𝑚𝑎𝑥𝑎𝑡+1
𝑄𝜋(𝑠𝑡+1, 𝑎𝑡+1). 

To face these issues, two techniques have been developed. The first one, called experience 

replay [9], uses a random sample of prior actions instead of the most recent action to proceed. 

This removes correlations in the observation sequence and smooths changes in the data 

distribution. In the second, iterative updates adjust Q towards target values that are only 

periodically updated, further reducing correlations with the target [10]. 

GoRiLa [11] (General Reinforcement Learning Architecture) adds parallelization to the DQN 

algorithms, thus achieving a massively distributed version of it. DQRN [12] (Deep Recurrent 

Q-Network), introduces the capabilities of Recurrent Neural Network architectures, through the 

addition LSTM (Long Short Term Memory) DNN layers, allowing the agent the ability to 

remember a bigger picture of the environment. 

The max operator in standard Q-learning and DQN uses the same values both to select and to 

evaluate an action. This makes it more likely to select overestimated values, resulting in 

overoptimistic value estimates. To prevent this, the selection from the evaluation can be 

decoupled. In Double Q-learning [13] (Double DQN), two value functions are learned by 
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assigning experiences randomly to update one of the two value functions, resulting in two sets 

of weights, w and w’. For each update, one set of weights is used to determine the greedy policy 

and the other to determine its value. The idea of Double Q-learning is to reduce overestimations 

and although not fully decoupled, the target network in the DQN architecture provides a natural 

candidate for the second value function, without having to introduce additional networks [14]. 

With experience stored in a replay memory, it becomes possible to break the temporal 

correlations by mixing more and less recent experiences for the updates, and rare experiences 

will be used for more than just a single update. However, an RL agent can learn more effectively 

from some transitions than from others. Therefore, prioritizing which transitions are replayed 

can make experience replay more efficient and effective than if all transitions are replayed 

uniformly. Prioritized experience replay [15] is built on top of DDQN further improving the 

state-of-the-art. 

A Dueling network architecture [16] explicitly separates the representation of state values and 

(state-dependent) action advantages as it consists of two streams that represent the state value 

function and the advantage function, while sharing a common convolutional feature learning 

module.  

𝑄(s, 𝑎) = 𝑉(𝑠) +  𝐴(𝑠, 𝑎) 

This dueling network should be understood as a single network where two streams are 

combined via a special aggregating layer to produce an estimate of the state-action value 

function, thus replacing the popular single-stream state-action value network in other existing 

algorithms such as DQN. The advantage function  𝐴 shows how advantageous taking action a 

is relative to the others at a given state s. This change is helpful, because sometimes it is 

unnecessary to know the exact value of each action, so just learning the state-value function 

can be enough in some cases. 

When we have to deal with continuous action spaces, an obvious approach to adapting DRL 

methods such as DQN to continuous domains is to simply discretize the action space. However, 

this has many limitations, most notably the curse of dimensionality: the number of actions 

increases exponentially with the number of degrees of freedom. In the continuous control 

domain, where actions are continuous and often high-dimensional, we argue that the existing 

control benchmarks fail to provide a comprehensive set of challenging problems. The situation 

is even worse for tasks that require fine control of actions as they require a correspondingly 

finer-grained discretization, leading to an explosion of the number of discrete actions. Such 

large action spaces are difficult to explore efficiently, and thus successfully training DQN-like 

networks in this context is likely intractable. Additionally, naive discretization of action spaces 

needlessly throws away information about the structure of the action domain, which may be 

essential for solving many problems [17][18].  

 

Policy-based methods 

Value-based methods work with discrete and finite action spaces, thus, it is possible to calculate 

the maximum value over all possible actions in each state. If a high-dimensional action space 

is considered, this maximum value over all possible actions may become computationally 

expensive, or even impossible in continuous action spaces. Moreover, sometimes value 

functions give too much information for the task of selecting an optimal policy and it makes 
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harder the training process, since it is unnecessary to compute the exact value for each state or 

each pair action-state. 

Policy-based methods can learn easily stochastic policies, thus, do not need to force exploration 

with some probability to ensure optimality, as it is done in value-based methods, given that the 

exploration is embedded in the learned function which ultimately converges to a deterministic 

policy. However, in order to improve learning strategies in policy gradient methods, much 

research focused on exploration is being carried out. In particular, [19] proposed two 

exploration techniques to address the limitations of gradient methods and [20] introduced a 

state-dependent exploration function that, during an episode, returns the same action for any 

given state resulting in less variance per episode and faster convergence. 

REINFORCE is a Monte-Carlo variant of policy gradient methods, thus since one full trajectory 

must be completed to construct a sample space, it is an off-policy method. The agent collects a 

trajectory of an episode using its policy and uses its results to update the policy. This method 

suffers from high variance and low convergence even though it gives unbiased estimates. To 

improve performance, a widely used variation of REINFORCE is to subtract a baseline to 

reduce the variance of the gradient estimation. For instance, the advantage of an action in a 

given state, while keeping the bias unchanged. It is similar to what is done in dueling networks 

from the value-based methods. 

Updating the weights of a neural network repeatedly for a batch, pushes the policy function far 

away from its initial estimation. To limit this issue, Trust Region Policy Optimization [22] 

(TRPO) methods update the policy function, but do not allow it to change much from the 

previous policy, by introducing a constraint for it. Given that TRPO is relatively complicated, 

Proximal Policy Optimization [23] (PPO) simplifies it by using a clipped surrogate objective 

while retaining similar performance and using multiple epochs of stochastic gradient ascent to 

perform each policy update. These modified methods have the stability and reliability of trust-

region methods but are much simpler to implement. The most common implementation of PPO 

is via the Actor-Critic Model introduced below. 

 

Actor-critic methods 

As the critic network learns which states are better or worse, the actor uses this information to 

teach the agent to seek out good states and avoid bad states. 

The Advantage Actor Critic [24] (A2C) algorithm uses a state-dependent baseline which is the 

expected advantage of an action in a given state reducing the variance of the gradient  

𝐴(𝑠, 𝑎) =  𝑄(s, 𝑎) − 𝑉(𝑠) 

Therefore, the critic will have to approximate two different functions: 𝑄(s, 𝑎) and 𝑉(𝑠). This 

algorithm is not very different in essence from REINFORCE, since it follows similar steps: 

sample transitions, compute the return and update the policy. However, in this method episodes 

do not need to be finite since A2C relies on the n-step updating approach, where the critic has 

to be learned in parallel. The actor and critic are stored in a global network and multiple 

instances of the environment are created in different parallel threads, representing the different 

actor-learners. All learners sample an episode starting with the actor and critic weights from 

the global networks and the global networks merge the gradients computed by each learner 

updating the parameters of the policy and critic networks. The learners continue training on 

new episodes with the updated global weights until convergence. A2C is a synchronous and 
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deterministic version of Asynchronous Advantage Actor-Critic [25] (A3C), where learners are 

fully independent, thus they only communicate through asynchronous updating of the global 

networks. Hence, A3C is designed to work very efficiently for parallel training. However, the 

fact that in A3C each learner talks to the global parameters independently may lead to learners 

playing with different versions of the network weights and, therefore, the aggregated update 

would not be optimal. Aversely, A2C ensures the same starting weights for all learnings by 

waiting for all the parallel actors to finish their work before updating the global parameters. 

These previous methods are modelling the policy function as a probability distribution, 

however, there are other methods that consider and calculate the policy as a deterministic 

decision such as Deterministic Policy Gradient [26] (DPG). In the stochastic case, the policy 

gradient integrates over both state and action spaces, whereas in the deterministic case it only 

integrates over the state space. As a result, computing the stochastic policy gradient may require 

more samples, especially if the action space has many dimensions. Deep Deterministic Policy 

Gradient [27] (DDPG) is an actor-critic algorithm that combines DPG and DQN. 

Soft Actor Critic [28] (SAC) incorporates the entropy measure of the policy into the reward to 

encourage exploration. It is an off-policy actor-critic algorithm following the maximum entropy 

RL framework. It optimizes a stochastic policy trained to maximize a trade-off between 

expected return and entropy, which is a measure of randomness in the policy. Increasing 

entropy results in more exploration, which can accelerate learning later on. It can also prevent 

the policy from prematurely converging to a bad local optimum. A precedent work is Soft Q-

Learning [29]. 

5.2.5.4. Challenges of DRL application in the NXG context 

The application of the aforementioned mechanisms is not trivial, and many research challenges 

raise in the WEFE decision-policy-making context. During the project, in the co-creation cyclic 

framework for policy governance, DRL agents will be trained based on a policies set and targets 

defined by the SHs. As a result, apart from the generated optimal policy packages, a set of 

trained agents will be available. 

Later, these agents will be used in the SLNAE DSS for real-time advice focusing on the default 

CSs’ targets, those targets used in its previous training. The second type of advice, that focused 

on the achievement of user-defined targets, will be more complex and time-consuming to be 

provided, since it requires a new online computation (i.e. an agent training).  

Below, the identified challenges and the proposed solutions are presented: 

- High-dimensional and non-linear tasks: Application of DRL algorithms. 

- SDMs slow sample rate: complex SDMs lead to slow simulation cycle time, thus ending 

with slow learning when it is used in the RL interaction flow. To avoid it, efficient code 

libraries or even parallel programming will be used when translating SDMs from the Stella 

modelling framework. 

- Complex action-space due to many policy combinations (policy packages): Policy Gradient 

or Actor-Critic DRL techniques will be used. 

- Real-time optimization and advice for user-defined targets advice: taking advantage of the 

available pre-trained agents, Transfer Learning techniques [30] will be used to generate a 

base knowledge. With it, the required time in the agent's learning stage will be considerably 

reduced. The selected base agents will be those that have been trained with similar targets. 
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- Multiobjective problem: Many WEFE policy-making scenarios can be proposed and 

analysed, which may result in different policy packages generation. For example, in 

transboundary CSs decisions can be made in a collaborative manner, thus taking into 

account the objectives of all entities at once. The opposite way is to independently consider 

the implicated entities and analyze which are the impact of upstream decisions in 

downstream cases. Also, other analyses can be run by separating the WEFE sectors, where 

different entities focus separately on their objectives. To do so, multi-agent systems are 

proposed, and collaborative vs no collaborative scenarios will be investigated. 

- Reward sparsity and credit assignment problems: research on these issues will be carried 

out during the project. 

 

5.2.5.5. Other algorithms, mechanisms and system 

benchmark  

The objective of the AI part of the SLNAE tool is to get good models to support the decision-

making by recommending favourable policy packages based on defined goals. This is a 

combinatorial optimization problem. The function to be maximized is the aggregation of 

indicators that will be co-defined to assess the policy goals achievement. Based on this function, 

it will be sought which policies are advised to consider and at what moment in time in the 

defined time horizon. 

In combinatorial optimization, the optimal solution must be identified from a large set of 

possible solutions that cannot usually be calculated one by one, since it would have a too high 

computational cost. Mathematical optimization such as linear programming and metaheuristics 

have been widely used to solve combinatorial optimization problems. In very complex 

problems, mathematical optimization methods can take too long to obtain optimal solutions. 

Therefore, in these situations, metaheuristic methods are commonly applied since they can 

obtain pretty good solutions in a reasonable time. However, metaheuristic algorithms can get 

stuck in local optimums and cannot guarantee an optimal result. Moreover, algorithms must be 

executed taking some time every time a new recommendation is needed in a given 

configuration. These may difficult the exploration of different policy package alternatives 

through an MDP. Classical optimization solutions are considered offline, require complete and 

previous knowledge of the environment dynamics, and are not always able to react to 

unexpected changes and handle uncertainties favourably. Thus, to better control complex and 

changing systems under uncertainties, more adaptive control is needed. 

To overcome this last drawback, RL models will be trained on all predefined MDP to facilitate 

the end-user interaction with the support models of the tool. RL represents a set of solutions 

that do not previously need to know any information about the system dynamics, in contrast 

with other traditional control and optimization techniques, and give immediate real-time 

answers to any faced situation. The adaptive and immediacy nature of RL methods offers great 

potential to be used as a decision support system or to directly manage, in an autonomous 

manner, decision processes since RL can generalize to unseen situations. As has been explained 

before, the RL models are trained offline based on a reward signal that guides the learning by 

telling the decision model how good the decisions have been taken in previous states or 

situations. The RL methodology is proposed given that the solution space is so big that all 
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solutions cannot be tested to find the one that better fits the end-user aims. Therefore, an 

exhaustive search is not an option. In the case of non-predefined MDP, i.e., user-defined targets, 

RL models will be trained online given the configuration of the simulations to give 

recommendations on policy packages in the different defined steps from the time horizon.  

How do we know that the RL recommendations are favourable given the policy goals defined 

by the users? Model validation will be done in two ways: 

• Domain expert validation: RL recommendations will be evaluated by domain experts 

and SHs in the co-creation framework workflow, in order to assess whether the 

recommendations are aligned with the requirements and needs of each CS and provide 

added value to the potential users of the SLNAE tool. 

• Benchmark with metaheuristics: Different scenarios will be executed with other control 

and optimization techniques in order to compare the results with the RL 

recommendations. These benchmarks will assess the predictive quality of the control 

models. Metaheuristic models such as Particle Swarm Optimization [31], Genetic 

algorithms [32], or Simulated Annealing [33] combined with local search algorithms 

will be evaluated. Even though metaheuristics are not real-time and adaptable system 

solutions as RL provides, traditional optimization algorithms can yield good sequential 

solutions. Moreover, these searching techniques will be considered to support the RL 

decision-making models. Different options will be examined: 

• RL vs metaheuristics (e.g., RL models on predefined MDP and metaheuristics 

on user-defined MDP) 

• Hybrid recommendation system 

• Benchmark with other algorithms: For instance, the Tree Parzen Estimator [34], which 

is a sequential model-based optimization algorithm that uses Bayesian reasoning. 

5.2.6. DSS 
The SLNAE DSS will provide policy package advice to the platform users. Depending on the 

required recommendations, it will access the pre-trained agents, or it will trigger a new training 

session as explained in the previous section. 

In the first case, real-time advice for default CS goals achievement is assured since the agents 

are already available. In the second case, a new training stage will be launched, and newly 

identified optimal policy packages will be continuously presented to the user. Furthermore, 

these new agents will be persisted and added to the already available set of agents to be used in 

future scenarios, thus reducing the next training times. 

5.2.7. Simulation Policy Framework 
In WP3, the CSs’ SDMs are developed using Stella software, a visual programming language 

for system dynamics modelling introduced in 1985 by Barry Richmond, which enables the 

definition of stock and flow variables, converters, connectors and other components. Here, 

SDMs embed also policy effects and low-level nexus indicators. 

Due to its format, it cannot be directly integrated nor executed by the SLNAE platform, thus it 

has to be previously translated into a more convenient programming language. To do so, the 

Simulation Policy Framework service develops a translation process that takes the SDMs in 

Stella format as an input, and integrates them into the SLNAE. This procedure is based on the 
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methodology implemented in the H2020 Sim4Nexus project, and proposes various 

improvements based on the lessons learned there. 

Once a new SDM is available, the following automatic flow is triggered: 

• Variable names are validated against the NGX Variables Inventory, and later translated 

to Python nomenclature.  

• Constant data is extracted and loaded into a specific and isolated data structure.  

• Time series data is extracted and loaded into a specific and isolated data structure.  

• Equations are extracted and loaded into a specific and isolated structure.  

• Initial stocks are extracted and loaded into a specific and isolated data structure.  

• Based on the previous data structures, the Python SDM is defined.  

• The Python SDM is executed from the first year till 2050 to check its correctness.  

• The outputs are validated monthly against a validation data set.  

• The Python SDM is executed from the first year till 2050 with some applied policies to 

check its correctness.  

• The outputs are validated monthly against a validation data set.  

Once ready, the SDMs are included in the SLNAE system to be used by other platform 

components, such as the self-learning engine. 

Additionally, the Simulation Policy Framework also integrates policy, goals, targets and 

WEFE indicators information to control its logic. These data are available in the NXG Data 

Sharing Tools. 

5.2.8. Analytical Engine 
The analytical engine will support other technical SLNAE components in the analytical 

computation tasks. For example, it will enable access to Hardware resources such as CPU or 

GPU, and will incorporate all the required Python libraries for the DRL agents’ training 

(Tensorflow13 or Pytorch14). 

Additionally, it will also incorporate other data analytics pipelines in order to process the NGX 

data. 

5.3. Nexogenesis Data sharing tools 
Smooth and dynamic communication between WPs is crucial for the success of the NXG 

project. In this context, several complex and high dependent cross-WP data pipelines have been 

identified (Figure 8). This issue enforces not only the initial requisite of having to define a 

specific and well-defined plan to manage it, e.g. the NXG co-creation framework, but also the 

necessity of digital services able to act as a bridge between them.  

In WP4, task T4.2 is aimed to implement a data-sharing platform able to fill this gap and provide 

the required support to final users, considering both internal NXG project requirements and 

external users’ necessities. In this scenario, it has been required to identify the roles of data 

providers and data consumers among the project WPs. Those WPs that, among its objectives, 

have to generate data to be used by other WPs in the project data pipeline are considered data 

 
13 https://www.tensorflow.org/  
14 https://pytorch.org/  

https://www.tensorflow.org/
https://pytorch.org/
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providers. Extensively, in a similar way, those WPs that require and use other WPs’ outcomes 

in order to accomplish their tasks are considered data consumers, Finally, in this schema, a WP 

can be at the same time both data consumer and data provider, as is the case of the WP3. Figure 

7 presents this classification, and further details are introduced in the next section. 

Additionally, task T4.2 also comprises all those services to harmonize the NXG data and make 

it available to the general public. In the previous roles classification, the general public is 

considered a special case of a data consumer. 

 

 

 
Figure 7. Nexogenesis data pipeline 

Depending on the final use of the data, these are available via a specific tool in the NXG Data 

Sharing Platform. In a first stage, data is used internally by the WPs with the final objective to 

develop the nexus complexity models (the SDMs) and ultimately the SLNAE service. To this 

goal, the NXG Internal Data Repository (IDR) is implemented. Second, complying with the 

Open Data policy and the DMP, data is harmonized and published (when it is possible) in an 

online Semantic Repository for public open access. 

The following sections describe the designs of such data-sharing tools based on the identified 

requirements. 

5.3.1. Internal Data Repository 
 

During the NXG project, many datasets are, and will be, created and updated. This process is 

being directly monitored by the DMP, but will be also supported by the NXG Internal Data 

Repository. In this case, the IDR will act as a digital platform to enable efficient cross-WP data 

sharing among data providers and data consumers. 

Given the elevated number of datasets that have to be shared among WPs, this data exchange 

may become difficult to coordinate. Thus in order to avoid point-to-point (WP-to-WP) 

Nexogenesis Data Sharing Tools

WP1 & SHs WP2 WP3 WP5 & CSsData providers

WP3 WP4 Final usersData consumers

Internal Data 
Repository

Semantic 
Repository
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communication, lessons learned from Sim4Nexus project (where similar requirements were not 

correctly addressed) demonstrated the utmost importance of this kind of tools. 

 

 

 
Figure 8. NXG cross-WP data pipelines in the Internal Data Repository 

From the proposed use cases, the data pipeline represented in Figure 8 is extracted. This pipeline 

represents the data flows and data dependencies between WPs in the NXG project. WP1 & SHs, 

WP2 and WP5 & CSs have the role of data providers, WP4 is a data consumer, and WP3 has 

both roles at the same time. Details regarding data flow, data and data formats are presented in 

Table 5.  

 
Table 5.Internal Data Repository data, data formats, data flows, and description 

Data Data format Data 

provider 

Data 

consumers 

Description 

Nexus Policies Excel file per 

CS 

WP1 & 

SHs and 

WP5 & 

CSs 

WP3 & WP4 To be used by WP3 when including 

policies in the SDMs, and by WP4 to build 

SLNAE and to show policies information 

in the UI 

Policy Goals, 

Policy Targets, 

Indicators, etc 

Excel file per 

CS 

WP1 & 

SHs and 

WP5 & 

CSs 

WP3 & WP4 To be used by WP3 to compute low-level 

indicators in the SDMs, and by WP4 to 

build SLNAE and to show information in 

the UI 

WP1 & SHs

WP2 WP4

Nexus policies

Nexus indicators

WP3
Reference pathway 
simulations

WP5 & CSs

CSs metadata

CSs translations

SDMs and 
validation data

Nexus Policy Goals and Policy Targets

WP5 & CSs
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Biophysical 

and socio-

economic 

modelling 

(Reference 

Pathways) 

simulations 

Excel file per 

CS and RP 

WP2 WP3 To be used by WP3 to develop the SDMs. 

A specific folder structure will be used to 

organize these datasets. 

SDMs .stmx per CS 

and RP 

WP3 WP4 To be used by WP4 for the SDM 

translation and integration to the SLNAE 

SDMs 

execution 

outputs  

Excel file per 

CS, RP and 

specific policy 

package 

WP3 WP4 To be used by WP4 to validate an SDM 

translation 

WEFE 

footprint 

indicators 

Excel file per 

CS 

WP1 & 

SHs, 

WP3 and 

WP5 & 

CSs 

WP4 To be used by WP3 to compute low-level 

indicators in the SDMs, and by WP4 to 

build SLNAE and to show information in 

the UI 

Case Study 

metadata 

Excel file per 

CS 

WP5 & 

CSs 

WP4 To be used by WP4 to show CS info in the 

UI 

Translations Excel file per 

CS 

WP5 & 

CSs 

WP4 To be used by WP4 to show CS info in 

different languages 

 

The technology proposed to implement the NXG IDR is Microsoft OneDrive15. The main 

restriction that guided this design decision is the fact that, generally, the project partners that 

have to use this tool have no IT knowledge. In this scenario, advanced SQL or NoSQL 

repositories are not allowed, due to the skills required to work with them. Furthermore, the 

superior functionalities that these technologies provide have not been identified among the IDR 

requirements (DST-1 to DST-9). 

The NXG OneDrive space will be structured by folders, being the top-level group of folders 

organized per CSs. The second level, in each CS folder, will have one folder per data type 

identified in Table 5. The data types SDMs and SDMs execution outputs are an exception, and 

will be put in the same folder due to their inter-dependence. Each data provider will be in charge 

to manage their own data in each sub-space. The data files will follow a versioning convention, 

starting in version 0.1, and increasing the minor version (0.x) until a big change is added to the 

data. In this case, the major version (x.0) will be increased. Minor versions will be used when 

minimal modifications or issues corrections are applied, and changes in major versions will be 

devoted to representing important improvements. When a new data file is uploaded, the old file 

will be moved into a folder named _old, which will store all the previous versions of that file. 

Additionally, at the same time, an history.xls file (available at folder level) will be updated by 

adding a new entry for that new version, and a description regarding the included modifications 

and the name of the person who did the upload. This history file will be used to have a global 

 
15 https://www.microsoft.com/es-es/microsoft-365/onedrive/online-cloud-storage  

https://www.microsoft.com/es-es/microsoft-365/onedrive/online-cloud-storage
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idea and keep track of the data modifications. All these rules are considered the NXG IDR 

protocol. 

In those cases where the data format is excel, the structure and content on the file will be agreed 

upon among data providers and data consumers. The names of each file will be also 

standardized. 

Based on this structure, the IDR will be deployed and hosted in the EURECAT digital premises. 

EURECAT, the T4.2 leader, will take the role of the system manager, and will administrate the 

repository. Mainly, three actions are required in this aspect: 

1. Administrate the access to project members. 

2. Ensure the correct application of the IDR protocol. 

3. Solve any possible issues. 

Regarding the access topic, a document (e.g. excel file) will be created and maintained to keep 

track of enabled permissions. By default, Microsoft OneDrive provides security via a log-in 

service, and access can be enabled by adding accounts to the shared space. 
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6. Conclusions 
The present document establishes the basis for the SLNAE design, which will be iterated during 

the first half of the project to finally consider the SHs necessities. Mainly, this feedback will be 

obtained during the second and third CSs workshops (2nd year of the project), where a deeper 

discussion on these topics will be proposed, since the first WS was presented as a project 

introduction. 

In this context, some technical details have to be decided, such as the GUI functionalities, how 

data will be shown, what kind of data will be required to the users in the registration process, 

the adequate DSS response time, the minimum simulation stepsize, etc. 

These pending decisions do not affect the project planning, since they are principally related to 

T4.5 Self-learning nexus assessment engine, which starts at M24. Other tasks, such T4.2 Data 

Sharing Tools, T4.3 Modelling of potential WEFE nexus impacts and stakeholder’s response, 

or T4.3. Reinforcement Learning engine, have the required information to start with their 

responsibilities. 
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Future Work/Next Steps 
The second version of this deliverable will be presented in M24, and will consider the SHs 

views and feedback on the SLNAE design. 

During this time, WP4 will collaborate in workshops WS2 and WS3 with the aim to elaborate 

on and discuss with SHs the subjects presented in this deliverable to finally design and develop 

a useful and valuable tool for them. 
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Annex I 
 
Table AI.1. Use Cases 

ID Description Component Goal System users Main course (steps) 
Potential 

requirements 

UI-1 The user is able to see a landing 

page explaining the NXG project 

and methodologies (e.g., the 

origin of reference pathways, 

and some initial data) 

User interface 

- General 

Let people know about 

the NXG tool and the 

project itself 

User (All) 1. Open nxg tool website 

2. Browse the landing page 

3. Read the NXG project 

information (common 

information for all CSs) 

  

UI-2 The user shall get information 

about the CSs: objectives, 

future scenarios, available 

policies, policy packages, goals, 

targets and indicators 

User interface 

- General 

Let people know about 

CSs in the project 

User (All) 1. Open nxg tool website 

2. Browse the landing page 

3. Read the CSs information  

4. The user can obtain 

information about the 

elements for a simulation: 

objectives, policies, policy 

packages, goals, targets, 

and indicators 

Automatic 

integration of 

CSs 

information 

UI-3 The user can select which CS 

wants to see in more detail 

User interface 

- General 

Investigate the 

particularities of a Case 

study 

User (All) 1. The user enter into the 

tool 

2. The user selects one of 

the available case studies 

(from a map) 

Automatic 

integration of 

CSs 

information 
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3. A new section is opened 

with data of the CS 

UI-4 The user is able to sign up and 

log in in the tool 

User interface 

- General 

Let people save results, 

see detailed analysis and 

results per simulations 

and other future 

features 

User (All) 1. Open nxg tool website 

2. Browse the landing page 

searching for register 

button 

3. Fill the form and submit 

4. Send confirmation email 

GDPR 

compliance 

UI-5 The user is able to manage its 

profile, settings and another 

user functionalities (i.e., 

recover the password, 

language, etc) 

User interface 

- General 

Let the users is able to 

manage its profile 

User (All) 1. Open nxg tool website 

3. Go to login section 

3.1. Click on recover 

password section 

3.2. Start process to recover 

the password: send 

email/type email & new 

password 

4. Go to profile section 

4.1. Change language 

GDPR 

compliance 

UI-6 The user wants to start a new 

simulation process 

User interface 

-  Simulations 

Management 

Let the users run new 

simulations 

User (All) 1. The user selects the 'NEW 

simulation' function 

2. The simulation's 

configuration section is 

presented (UI-11) 
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UI-7 The user wants to access the 

saved simulations 

User interface 

-  Simulations 

Management 

Let the users access the 

saved simulations 

User (All) 1. The user is logged in  

2. The user access to the 

simulation's management 

section 

3. The saved simulations are 

presented 

API and 

Database 

UI-8 The user wants to 

duplicate/rename/remove 

saved simulations in a table 

format 

User interface 

-  Simulations 

Management 

Let the users manage the 

saved simulations 

User (All) 1. The user is logged in  

2.  The user access the 

simulation's management 

section 

3. The saved simulations are 

presented 

4. The user can duplicate, 

edit, rename, and remove 

saved simulations 

API and 

Database 

UI-9 The user wants to see the 

results of saved simulations 

User interface 

-  Simulations 

Management 

Let the users access the 

saved results 

User (All) 1. The user is logged in  

2. The user access the 

simulation's management 

section 

3. The saved simulations are 

presented 

4. The user can select one of 

the saved simulations 

5. The results of the 

selected simulations are 

presented 

API and 

Database 
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UI-10 The user wants to load a saved 

simulation 

User interface 

-  Simulations 

Management 

Let the users rerun (and 

possibly modify) a saved 

simulation 

User (All) 1. The user is logged in  

2. The user access the 

simulation's management 

section 

3. The saved simulations are 

presented 

4. The user can select one of 

the saved simulations 

5. The simulation is loaded 

API and 

Database 

UI-11 The user shall configure a new 

simulation in an easy user 

interface  

User interface 

- Simulations 

Configuration 

To configure all possible 

parameres to run a 

simulation: Select a CS, 

select a reference 

pathway, level of 

uncertainty,  

select/define targets, 

select indicators, etc 

User (All) (The user is in the 

Configuration section)  

1. The user selects the CS 

2. The user selects the 

reference pathway 

3. The user selects the level 

of uncertainty 

4. The user selects/defines 

targets and indicators 

(different time horizon on 

the achievement of targets 

can be defined) 

5. The users clicks "next" to 

go to the Simulation section 

Wizard process 

Database or 

API 

UI-12 The user shall be able to select 

and apply policy packages 

User interface 

- Simulation 

Simulate the effects of 

policies in the nexus. Get 

Level of policy 

User (All) (The user is in the 

Simulation section)  

1. The user has the option to 

API and polices 

logic system 
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through the simulation time 

horizon.  

integration (conflicts-

synergies) – Policy 

impacts  

select multiple policies from 

different nexus sectors 

(WEFE) and to apply them 

at a given time step 

UI-13 The user can navigate forward 

and backward through the 

simulation time horizon in a 

dynamic timestep size 

User interface 

- Simulation 

Change the 

implementation of policy 

packages based on 

current results 

User (All) (The user is in the 

Simulation section)  

1. The user selects a policy 

package to be applied (UI-

12) and a specific timestep 

size to advance in the 

simulation time horizon 

2. The simulation is run 

3. The user decides whether 

to continue o go back into 

the simulation 

4. This cycle is repeated 

until the user decides to 

finish the simulation 

API and polices 

logic system 

UI-14 The user can personalize a 

policy when it is applied in the 

simulation 

User interface 

- Simulation 

Configure the policies to 

simulate with start and 

end parameters, with a 

range of application, and 

some additional decision 

variables.  

User (All) (The user is in a Simulation 

section)  

1. The user configure the 

policies (budgets allocated, 

aims, etc if possible)                      

2. The user configures when 

to start applying them 

3. The user configures the 

API and polices 

logic system 
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duration of the policy (if 

possible) 

4. Other configurations may 

be needed per policy 

UI-15 The user shall be able to see the 

information of the 

configuration section, the 

applied policy packages, the 

nexus variables and the level of 

achievement of both default 

and configured nexus targets 

along with the simulation time 

horizon and available tokens 

User interface 

- Simulation 

To have the reference 

about the configuration 

stage and the current 

simulation stage 

User (All) (The user is in a Simulation 

section) 

1. The user can visualize the 

configuration details: CS, 

reference pathway, 

uncertainty, indicators, ...  

2. The user can visualize the 

selection of policy 

packages, targets 

achievement, etc 

UI design 

UI-16 The user shall be able to access 

to policy package 

recommendations based on 

both default and configured 

nexus targets 

User interface 

- Simulation 

Get some support in the 

decision of selecting 

policies 

User (All) (The user is in a Simulation 

section) 

1. The user opens a selct 

button an choose the DSS 

features to apply in the 

simulation 

2. expected options: entire 

policy packages or fine-

DSS 
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tuning of selected by user 

policy packages. 

U-17 The user shall be able to save a 

simulation at any moment 

User interface 

- Simulation 

Save simulation state User (All) (The user is in the 

Simulation section) 

1. The user saves the 

current simulation 

API and 

Database 

UI-18 The user shall be able to select 

the way to visualize the results 

from a set of possibilities 

User interface 

- Simulation 

results 

Select the best way to 

assess NEXUS  

User (All) (The user is in the Results 

section)  

1. The user is able to see a 

menu with different options 

to present the results and 

evaluations  

2. The user is able to select 

from the menu the way to 

see the simulation results 

(simple view, detailed view) 

UI design 

UI-19 Simple view: The user wants to 

see results of applying a set of 

policies in a case study along 

the years 

User interface 

- Simulation 

results 

Simulate the effects of 

policies in the nexus, 

calculate indicators and 

targets, and output 

variables for a CS and 

reference pathway 

User (All) (The user is in the Results 

section)  

1. The user is able to see in 

graphics the effects of the 

policies in the nexus sectors 

2. The user is able to see in 

UI design 
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a table the indicator results 

and the targets 

UI-20 Detailed view: The user wants 

to visualize the uncertainty in 

the results 

User interface 

- Simulation 

results 

Uncertainty must be 

considered in the 

viualization part 

User (All) (The user is in the Results 

section)  

1. The user sees the results 

2.  The user selects the 

depth technical analysis: 

The user sees the results 

with uncertainty 

visualization 

UI design 

UI-21 Detailed view: NEXUS impacts 

of the application of policy 

packages and SDM variables 

User interface 

- Simulation 

results 

Obtain a depth 

numerical analysis in 

NEXUS sectors and SDM 

variables simulations 

User (All) (The user is in the Results 

section)  

1. The user sees the results 

2.  The user selects the 

depth technical analysis: 

how the application of a 

policy in a nexus sector 

affects another nexus 

sectors is presented 

UI design 
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UI-22 The user wants to compare the 

results of different simulations 

in the same CS 

User interface 

- Simulations 

comparison 

Compare simulations in 

the same CS using the 

same framework 

User (All) (The user is in the 

Simulations Management 

section)  

1. The user is able to select 

the saved simulations that 

wants to compare from the 

same CS, same Reference 

Pathway, and same default 

policy goals 

2. The user is able to see the 

comparisons with the 

targets and indicators 

achievement and applied 

policy packages 

API, Database 

and UI design 

UI-23 The user wants to compare the 

results of different simulations 

between different CSs 

User interface 

- Simulations 

comparison 

Compare simulations 

between different CSs 

using the same 

framework 

User (All) (The user is in the 

Simulations Management 

section)  

1. The user is able to select 

the saved simulations that 

wants to compare from 

different CS, same 

Reference Pathway, WEFE 

footprint indicators, and 

common policy goals 

2. The user is able to see the 

comparisons with the 

API, Database 

and UI design 



D4.1 Self-learning nexus engine specifications and technical design 

 

 

60 This project has received funding from the European Union’s Horizon 2020 research and 

innovation programme under grant agreement No 101003881 

targets and indicators 

achievement and applied 

policy packages 

DSS-1 The user wants to get 

recommendations on policy 

packages based on default 

targets 

DSS 

functionalities 

- SLNAE 

Get policy 

recommendation 

according to defined 

configurations: 

reference pathway, time 

steps, number of years, 

uncertainty, indicators 

and default targets. And 

let users see how the 

‘best’ policy option(s) 

change depending on 

which targets are 

prioritised (selected) 

User (All) (The user is in the 

Simulation section)  

1. The user configures 

stepsize and horizon time 

for the simulation (default 

targets and indicators 

already defined in the 

configuration section) 

2. The user asks for 

recommendation on 

specific steps during the 

policy packages selection 

(can get 1 or more 

recommendations) 

3. The user gets a 

recommendation based on 

policies 

AI service 
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DSS-2 The user wants to get 

recommendations on policy 

packages based on defined by 

user targets 

DSS 

functionalities 

- SLNAE 

Get policy 

recommendation 

according to defined 

configurations: 

reference pathway, time 

steps, number of years, 

uncertainty, indicators 

and user-defined targets. 

And let users see how 

the ‘best’ policy option(s) 

change depending on 

which targets are 

prioritised (selected) 

User (All) (The user is in the 

Simulation section)  

1. The user configures 

stepsize and horizon time 

for the simulation (user-

defined targets and 

indicators already defined 

in the configuration section) 

2. The user asks for 

recommendation on 

specific steps during the 

policy packages selection 

(can get 1 or more 

recommendations) 

3. The user gets a 

recommendation based on 

policies 

AI service 

DSS-3 Identification of relevant policy 

packages with the support of an 

AI in an iterative co-creation 

process 

DSS 

functionalities 

- co-creation 

process 

Identification of revelant 

policy packages for their 

evaluation with SHs 

under the co-creation 

framework 

WP1 (Policy 

modellers) & 

WP4 (SLNAE) 

& WP5 (CSs) & 

SHs 

(Iterative co-creation 

process)  

1. Definition of Nexus 

Policies and Targets (WP1 & 

WP5 & SHs) 

2. Integration of Nexus 

Policies and Indicators into 

Complexity Science tools 

(WP2 & WP3) 

Co-creation 

framework 

Automatic 

SDMs 

integration 

Automatic 

Policies logic 

integration 

Automatic 
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3. DSS for the Identification 

of optimal Nexus Policy 

packages (WP4) 

4. Evaluation of proposed 

policy packages (WP1 & 

SHs) 

5. Back to 1  

Nexus goals, 

targets and 

indicators 

integration 

AI service 

DST-1 the user wants to add/update 

Policy data for a specific CS 

Data Sharing 

Tool 

Last policy data is 

available for the SDMs 

and SLNAE development 

WP1 (Policy 

modellers) & 

WP5 (CSs) 

1. The user adds a version 

number to the new file 

following stablished 

protocol 

2. The user logs in into the 

Data repository and save 

the data (in excel format) in 

the corresponding folder 

3. The user edit the 

summary file and add 

information about the new 

data 

4. A notification is sent to 

required people 

A data sharing 

protocol and 

platform 
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DST-2 the user wants to add/update 

Policy Goals, Policy Targets and 

Indicators data for a specific CS 

Data Sharing 

Tool 

Last Policy Goals, Policy 

Targets and Indicators 

data is available for the 

SDMs and SLNAE 

development 

WP1 (Policy 

modellers) & 

WP5 (CSs) 

1. The user adds a version 

number to the new file 

following stablished 

protocol 

2. The user enter into the 

Data repository and save 

the data (in excel format) in 

the corresponding folder 

3. The user edit the 

summary file and add 

information about the new 

data 

4. A notification is sent to 

required people 

A data sharing 

protocol and 

platform 

DST-3 the user wants to add/update 

predictions/simulated 

biophysical and socio-economic 

modelling outputs for a specific 

CS and scenario/reference 

pathway 

Data Sharing 

Tool 

Last simulation data is 

available for the SDMs 

construction 

WP2 

(Environment 

simulators) 

1. The user adds a version 

number to the new file 

following stablished 

protocol 

2. The user enter into the 

Data repository and save 

the data (in ascii/binary 

formats) in the 

corresponding folder 

3. The user edit the 

summary file and add 

information about the new 

A data sharing 

protocol and 

platform 
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data 

4. A notification is sent to 

required people 

DST-4 the user wants to access to data 

to build an SDM for a specific CS 

and scenario/reference 

pathway 

Data Sharing 

Tool 

Access to new data 

(either new version of 

Policies, Policy Goals or 

simulated reference 

pathways) to work on a 

specific SDM 

WP3 (SDMs) 1.1 DST-1 has been 

successfully completed 

1.2 Or DST-2 has been 

successfully completed 

1.3 Or DST-3 has been 

successfully completed 

2. The user enters the Data 

Repository in the 

corresponding folder and 

downloads the data 

A data sharing 

protocol and 

platform 

DST-5 the user wants to add/update 

an SDM for a specific CS and 

scenario/reference pathway 

Data Sharing 

Tool 

Last SDMs versions are 

available for translation 

in SLNAE 

WP3 (SDMs) 1. The user adds a version 

number to the new file 

following stablished 

protocol 

2. The user enter into the 

Data repository and save 

the SDM (in .stmx format) 

and the required validation 

data (in excel format) in the 

A data sharing 

protocol and 

platform 
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corresponding folder 

3. The user edit the 

summary file and add 

information about the new 

data 

4. A notification is sent to 

required people 

DST-6 The user wants to add/update 

WEFE footprint indicators 

Data Sharing 

Tool 

Last WEFE footprint 

indicators data is 

available for the SDMs 

and SLNAE development 

WP3 (SDMs) 1. The user adds a version 

number to the new file 

following stablished 

protocol 

2. The user enter into the 

Data repository and save 

the data (in excel format) in 

the corresponding folder 

3. The user edit the 

summary file and add 

information about the new 

data 

4. A notification is sent to 

required people 

A data sharing 

protocol and 

platform 
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DST-7 the user wants to access to data 

to work on SLNAE 

Data Sharing 

Tool 

Access to new data 

(either new versions of 

Policies, Policy Goals, 

SDMs or WEFE footprint 

indicators, CSs info, etc) 

to work on the SLNAE 

WP4 (SLNAE) 1.1 DST-1 has been 

successfully completed 

1.2 Or DST-2 has been 

successfully completed 

1.3 Or DST-5 has been 

successfully completed 

1.3 Or DST-6 has been 

successfully completed 

2. The user enters the Data 

Repository in the 

corresponding folder and 

downloads the data 

A data sharing 

protocol and 

platform 

DST-8 WP5 team wants to add/update 

CS metadata 

Data Sharing 

Tool 

Last CS metadata is 

available for the SLNAE 

development 

WP5 (CSs) 1. The user adds a version 

number to the new file 

following stablished 

protocol 

2. The user enter into the 

Data repository and save 

the data (in excel format) in 

the corresponding folder 

3. The user edit the 

summary file and add 

information about the new 

data 

4. A notification is sent to 

required people 

A data sharing 

protocol and 

platform 
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DST-9 WP5 team wants to add/update 

text translations 

Data Sharing 

Tool 

Last translations are 

available for the SLNAE 

development 

WP5 (CSs) 1. The user adds a version 

number to the new file 

following stablished 

protocol 

2. The user enter into the 

Data repository and save 

the data (in excel format) in 

the corresponding folder 

3. The user edit the 

summary file and add 

information about the new 

data 

4. A notification is sent to 

required people 

A data sharing 

protocol and 

platform 

DST-

10 

An external user wants to 

access to the NXG open data 

Data Sharing 

Tool 

An external user access 

to Open and Harmonized 

data generated during 

the NXG project through 

the Semantic Repository 

User (All) 1. The user access to the 

Semantic Repository 

2. The user obtains the 

required information 

Sematic 

Repository 
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Annex II 
Table AII.1. Requirements 

ID Use 

case 

Component Description Details Prerequisites To be 

iterated 

FR-01 UI-4 User interface - General The system allows the user's 

registration (sign in) 

At least, username, email and 

password information will be 

required 

  

FR-02 UI-4 User interface - General The system allows the user to log in 
   

FR-03 UI-4 User interface - General The system allows the user to log out 
   

FR-04 UI-4 User interface - General The system allows the user to log in in 

a guest mode 

No sign in is required 
  

FR-05 UI-4 User interface - General The system allows the user's password 

recovery 

   

FR-06 UI-5 User interface - General The system allows the user's profile 

management 

At least, username and email 

information 

  

FR-07 UI-5 User interface - General The system allows the user to change 

the language 

English, Greek, Bulgarian, Italian, 

German, Romanian, Serbian, 

Latvian, Lithuanian 

A native translator 

from English to 

each CS is required 

* 

FR-08 all SLNAE-Backend The system models the user software 

entity 

The user entity contains a 

username, email, registration 

date and encrypted password 

 
* 

FR-09 UI-4 User interface - General The system shows information about 

cookies and GDPR 

   

FR-10 UI-1 User interface - General The system has a main view General project information is 

shown 

  

FR-11 UI-2 User interface - General The system has a CSs main view General CSs information is 

shown on a map  
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FR-12 UI-2 User interface - General The system has a CS specific view 5 CS specific pages provide 

detailed information: 

- CS's characteristics 

- Available policies 

- Nexus goals and targets 

  

FR-13 UI-6, 

UI-all 

User interface - General The system has a shortcut to access the 

simulation configuration view to start a 

new simulation 

   

FR-14 UI-7, 

UI-all 

User interface - General The system has a shortcut to access the 

simulation management view 

   

FR-15 UI-all User interface - General The system has a shortcut to access the 

simulation view 

   

FR-16 UI-all User interface - General The system has a shortcut to access the 

simulation results view 

   

FR-17 UI-all User interface - General The system has a shortcut to access the 

simulation comparison view 

   

FR-18 UI-11 User interface -  

Simulations 

Configuration 

The system has a view to configure a 

simulation 

Static parameters are presented 

to the user to configure the 

simulation. At least, the 

following parameters are 

included:  

- The CS 

- The reference pathway 

- Simulation goals, targets and 

WEFE or CS specific indicators 

(to be defined by the user) 

- Uncertainty mode 

 
* 
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FR-19 UI-11 User interface -  

Simulations 

Configuration 

The simulation configuration view 

allows the user to select and configure 

simulation goals and targets 

Specific simulation goals can be 

defined, and new targets can be 

configured. The time step to 

achieve these targets can also be 

set 

 
* 

FR-20 UI-7 to 

UI-10 

User interface -  

Simulations 

Management 

The system has a view to manage 

saved simulations 

Saved simulations are presented 

in a table mode. 

the user is logged 

in 

 

FR-21 UI-9 User interface -  

Simulations 

Management 

The simulation management view 

allows the user to see the results of a 

simulation 

   

FR-22 UI-10 User interface -  

Simulations 

Management 

The simulation management view 

allows the user to load a simulation 

   

FR-23 UI-8 User interface -  

Simulations 

Management 

The simulation management view 

allows the user to remove a simulation 

   

FR-24 UI-8 User interface -  

Simulations 

Management 

The simulation management view 

allows the user to rename a simulation 

   

FR-25 UI-8 User interface -  

Simulations 

Management 

The simulation management view 

allows the user to duplicate a 

simulation 

By default, the new simulation 

has the source simulation name 

plus '_copy' 

  

FR-26 UI-22, 

UI-23 

User interface -  

Simulations 

Management 

The simulation management view 

allows the selection of multiple 

simulations for comparison 

No more than five simulations 

can be compared at the same 

time 
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FR-27 UI-12 

to UI-

17 

User interface - 

Simulation 

The system has a view to run a 

simulation 

   

FR-28 UI-12, 

UI-13 

User interface - 

Simulation 

The simulation view shows the 

simulation time horizon 

from 2020 till 2050 
  

FR-29 UI-13 User interface - 

Simulation 

The simulation view allows the user to 

go forward and backward through the 

simulation time horizon 

   

FR-30 UI-12 User interface - 

Simulation 

The simulation view allows the user to 

select a specific timestep to be 

simulated 

The minimum time step size is 1 

year 

 
* 

FR-31 UI-12 User interface - 

Simulation 

The simulation view shows available 

policies to be applied. 

Policies information is shown 

(e.g. building time, duration, 

required tokens) 

 
* 

FR-32 UI-12 User interface - 

Simulation 

The simulation view allows the user to 

apply policies 

Policies can be applied at 

specific time step, and a 

simulation button triggers the 

execution of the configured 

scenario 

  

FR-33 UI-12 User interface - 

Simulation 

The simulation view allows the user to 

remove applied policies 

   

FR-34 UI-12, 

UI-15 

User interface - 

Simulation 

The simulation view shows the applied 

policies 

   

FR-35 UI-14 User interface - 

Simulation 

The simulation view allows the user to 

configure policies 

In those cases when the policy 

can be configured 

  

FR-36 UI-12 User interface - 

Simulation 

The simulation view limits the 

application of policies when required 

When a policy can't be applied 

due to restrictions with other 
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already selected policies, they 

should be hidden. 

FR-37 UI-15 User interface - 

Simulation 

The simulation view shows available 

tokens to apply policies 

The application of a policy has 

associated an economic and 

social costs expressed in tokens 

 
* 

FR-38 UI-12 User interface - 

Simulation 

The simulation view limits the 

application of policies when enough 

tokens are not available 

When a policy can't be applied 

due to token limitations, they 

should be hidden 

 
* 

FR-39 UI-15 User interface - 

Simulation 

The simulation view shows the level of 

achievement of default Nexus Goals, 

targets and WEFE footprint indicators 

A set of default metrics per CS 

(WEFE footprint indicators are 

the same across CSs) 

  

FR-40 UI-15 User interface - 

Simulation 

The simulation view shows the level of 

achievement of user-defined Nexus 

Goals, targets and WEFE footprint 

indicators 

A set of user-defined metrics per 

simulation 

 
* 

FR-41 UI-15 User interface - 

Simulation 

The simulation view shows how Nexus 

variables evolve during simulation 

   

FR-42 UI-17 User interface - 

Simulation 

The simulation view allows the user to 

save a simulation 

A simulation name must be 

given, and another simulation 

metadata is also persisted, such 

as the creation and modification 

date. Simulation configuration, 

selected policy packages and 

targets achievement level is 

saved 

the user is logged 

in 

 

FR-43 UI-16, 

DSS-1 

User interface - 

Simulation 

The simulation view shows policy 

packages recommendations aimed to 

Recommendations generation 

time should be low (<30s) 
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achieve default goals, targets and 

WEFE footprint indicators 

FR-44 UI-16, 

DSS-2 

User interface - 

Simulation 

The simulation view shows policy 

packages recommendations aimed to 

achieve user-defined goals, targets and 

WEFE footprint indicators 

  
* 

FR-45 UI-6 to 

UI-23 

SLNAE-Backend The system models the simulation 

software entity 

The simulation entity contains a 

simulation name, creation and 

modification date time, the 

configuration static parameters, 

the applied policies, and targets 

achievement level 

  

FR-46 UI-18 

to UI-

21 

User interface - 

Simulation results 

The system has a view to show the 

simulation results 

The user can choose among two 

specific view modes to analyse 

simulation results 

  

FR-47 UI-19 User interface - 

Simulation results 

The simulation results view has a basic 

mode 

Mode to be used by non-expert 

users where basic Nexus 

information is shown 

 
* 

FR-48 UI-20, 

UI-21 

User interface - 

Simulation results 

The simulation results view has an 

advanced mode 

Mode to be used by expert users 

where a complete view of Nexus 

information is shown 

 
* 

FR-49 UI-20, 

UI-21 

User interface - 

Simulation results 

The advanced mode of the simulation 

results view can show uncertainty in 

simulations 

  
* 

FR-50 UI-20, 

UI-21 

User interface - 

Simulation results 

The advanced mode of the simulation 

results view shows a deeper detail on 

Nexus variables 

  
* 
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FR-51 UI-22, 

UI-23 

User interface - 

Simulation comparison 

The system has a view to allow the 

simulations comparison 

Applied policies are shown for 

each simulation 

  

FR-52 UI-22 User interface - 

Simulation comparison 

The simulations comparison view 

allows to compare simulations ran for 

a given CS 

The level of achievement of 

default Goals and Targets is 

compared. Other common 

indicators are also shown in the 

comparison  

 
* 

FR-53 UI-23 User interface - 

Simulation comparison 

The simulations comparison view 

allows to compare simulations ran for 

any CS 

The level of achievement of 

WEFE footprint indicators 

 
* 

FR-54 all SLNAE-Backend The system offers a REST API to 

manage the software entities 

CRUD methods are offered for 

each of the identified entities 

(e.g. simulations) 

  

FR-55 all SLNAE-Backend The system persists the software 

entities in a database 

CRUD methods are offered for 

each of the identified entities 

(e.g. simulations) 

  

FR-56 UI-12 

to UI-

17 

SLNAE-Backend The system implements the polices 

logic 

Building time, active time, 

required tokens, generated 

tokens, permanent 

  

FR-57 DST-1, 

DST-2 

SLNAE-Backend The system automatically integrates 

policies when new versions are 

available 

   

FR-58 DST-5, 

DST-7 

SLNAE-Backend The system automatically integrates 

SDMs when new versions are available 

Stella language is translated to 

python. 

  

FR-59 DST-2, 

DST-6, 

DST-7 

SLNAE-Backend The system automatically integrates 

Nexus goals, targets and WEFE and CSs 

indicators when new versions are 

available 
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FR-60 DST-7, 

DST-8 

SLNAE-Backend The system automatically integrates 

CSs information 

   

FR-61 DST-

10 

Data Sharing Tool The system automatically harmonize 

data  

Following adequate ontologies 
  

FR-62 DST-

10 

Data Sharing Tool The system automatically publishes 

data in an open infrastructure 

In the Semantic Repository 
  

FR-63 DSS-3 DSS The system identifies optimal policy 

packages given a predefined set of 

indicators to be achieved 

In background 
  

FR-64 DST-1, 

DST-7 

 
The system allows the user to 

upload/download data to define 

Policies 

In excel format for a specific CS 
  

FR-65 DST-2, 

DST-7 

 
The system allows the user to 

upload/download data to define goals, 

targets and indicators 

In excel format for a specific CS 
  

FR-66 DST-3, 

DST-4 

 
The system allows the user to 

upload/download biophysical and 

socio-economic modelling outputs 

In ascii/binary formats for a 

specific CS and reference 

pathway 

  

FR-67 DST-5, 

DST-7 

 
The system allows the user to 

upload/download SDMs 

In Stella (.stmx) format for a 

specific CS and reference 

pathway 

  

FR-68 DST-6, 

DST-7 

 
The system allows the user to 

upload/download data to define WEFE 

footprint indicators 

In excel format for a specific CS 
  

NFR-

01 

all all Usability. The interaction by the user 

with the system must be simple and 

easy to use. 
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NFR-

02 

all all Usability: Simple navigation structure, 

with the buttons always in the same 

place and with the possibility of going 

back or to the main menu. 

   

NFR-

03 

all all Usability: The UI will follow the 

principles of adaptive/responsive web 

design. 

   

NFR-

04 

all all Usability: The UI must be compatible 

with all major modern browsers 

(Firefox, Chrome, Edge/IE). 

   

NFR-

05 

all all Security: Standard security capabilities 

in browsers, this includes the ability to 

manage cookies and the use of HTTPs. 

   

NFR-

06 

all all Security: The system must implement 

all the necessary security components 

to ensure the privacy and 

confidentiality of users and the 

protection of the processed data. 

   

NFR-

07 

all all Reliability: The system must be 

consistent, with good error control and 

management. 

   

NFR-

08 

all all Reliability: The system must be a high 

availability service ("High availability"), 

ensuring that the platform can 

continue to function at a lower level in 

the event of failures of some of its 

components. 
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NFR-

09 

all all Scalability: The service must be 

scalable to provide acceptable 

response time 

   

 


